#2 SLAM_Modeling motion(运动建模)

基本模型

一般的时态预测模型可以写成以下形式:

其中的参数定义描述为:

  • x n \mathbf{x}_{n} xn:是在 t n ≜ n Δ t t_{n}\triangleq n \Delta t tnnΔt时的状态空间。
  • x n − 1 \mathbf{x}_{n-1} xn1:上一个空间状态。
  • f n f_{n} fn:一般是非线性函数
  • u n \mathbf{u}_{n} un:是运动控制信号
  • i:是个扰动期望轨迹的随机脉冲矢量,一般认为是高斯协方差Q

为了方便表述和简化符号,我们通常会引入了箭头赋值操作符"←",意思是左边的项被更新为右边操作的结果:

除了运动模型,我们还要计算估计的运动误差e,使我们能够去最小化误差量。而误差可以用不同的公式定义,选择在简单性和可行性下进行。这里我选择较为简化的模型:

其中的参数定义描述为:

  • u n \mathbf{u}_{n}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值