运动建模
基本模型
一般的时态预测模型可以写成以下形式:
其中的参数定义描述为:
- x n \mathbf{x}_{n} xn:是在 t n ≜ n Δ t t_{n}\triangleq n \Delta t tn≜nΔt时的状态空间。
- x n − 1 \mathbf{x}_{n-1} xn−1:上一个空间状态。
- f n f_{n} fn:一般是非线性函数
- u n \mathbf{u}_{n} un:是运动控制信号
- i:是个扰动期望轨迹的随机脉冲矢量,一般认为是高斯协方差Q
为了方便表述和简化符号,我们通常会引入了箭头赋值操作符"←",意思是左边的项被更新为右边操作的结果:
除了运动模型,我们还要计算估计的运动误差e,使我们能够去最小化误差量。而误差可以用不同的公式定义,选择在简单性和可行性下进行。这里我选择较为简化的模型:
其中的参数定义描述为:
- u n \mathbf{u}_{n}