SLAM运动模型

经典的SLAM模型是由一个运动方程和一个观测方程构成的,如下图所示:

其中:x_k为机器人的状态,z为机器人的观测数据,u_k为控制数据,y_j观测点,w和v分别为运动噪声和观测噪声。f为运动方程,h为观测方程。

  • 控制数据是机器人记录自身运动的传感器获取的数据,比如IMU中的陀螺仪可以测量角速度、加速度计可以测量运动的加速度。
  • 测量数据则是机器人记录环境信息的传感器获取的数据,比如相机可以将环境转化为二维的图像像素、激光雷达捕捉环境中的信息生成点云。

SLAM问题旨在解决两个问题,一个是定位,一个是建图,因此一般来说SLAM的运动模型中运动方程是求解姿态即定位问题,观测方程是求解地图点即建图问题。(在具体的情境下,含义不尽相同,观测方程也不一定是为了求解建图问题。)

下面举两个示例来解释上面SLAM模型的含义。

  • 1.当机器人携带雷达和imu运动时,以LIO-SAM为例:

此时,u_k控制数据为imu数据和lidar数据,f运动方程为imu的预积分以及ICP通过非线性优化求解位姿的过程,z观测数据为lidar的原始数据,y_j观测点即lidar点云的世界坐标系坐标,h观测方程就是lidar坐标系到世界坐标系的转化方程。

  • 2.当机器人携带相机运动时,以ORB-SLAM2为例:

当ORB-SLAM2处于恒速跟踪模型时,u_k控制数据是图像帧(图像像素),f运动方程是恒速模型以及通过图像帧求解位姿的方程,z观测数据为图像像素,y_i观测点为图像像素生成的地图点,h观测方程就是相机坐标系到地图坐标系的转换方程。

### SLAM 中三维刚体运动模型 在同步定位与地图构建(SLAM)领域,三维刚体运动模型用于描述不同坐标系间的转换关系。具体来说,在SLAM框架下,涉及多个重要的坐标系,包括但不限于世界坐标系、机器人坐标系以及相机坐标系等[^5]。 #### 刚体运动特性 对于任意给定的向量而言,在经历刚体运动前后其长度和方向余弦均保持不变。这意味着当物体仅发生旋转和平移操作而不伴随形变时,则认为该过程遵循着严格的刚体运动规律。这种性质保证了即使是在不同的参照体系间切换观察视角,对象本身的几何特征也不会受到影响。 #### 数学表达方式 为了精确刻画上述提到的空间变换行为,可以采用齐次坐标表示法来简化计算流程并提高效率。设\( T \in SE(3)\)(特殊欧氏群),代表从源坐标系到目标坐标系的一个欧式变换矩阵: \[ T=\left[\begin{array}{cc} R & t \\ \mathbf{0}^{T} & 1 \end{array}\right], R \in SO(3),t \in \mathbb{R}^{3} \] 其中 \(R\) 表示绕原点发生的纯旋转变换部分;而 \(t\) 是沿三个轴方向上的平移分量。利用这样的结构化定义能够方便地实现对复杂场景中多姿态变化的有效管理。 #### 应用实例 考虑到实际应用场景的需求,比如移动机器人自主导航任务里,就需要不断地更新自身相对于周围环境的位置信息。此时借助于激光雷达或者摄像头获取外部感知数据,并结合IMU惯导装置提供的内部状态反馈共同完成实时定位功能。在此基础上进一步开展路径规划等工作就变得可行起来。 ```python import numpy as np def se3_to_SE3(xi): """Converts a vector xi in the Lie algebra of SE(3) to its corresponding transformation matrix.""" omega = xi[:3] v = xi[3:] skew_omega = np.array([[ 0, -omega[2], omega[1]], [ omega[2], 0, -omega[0]], [-omega[1], omega[0], 0]]) theta = np.linalg.norm(omega) if abs(theta)<np.finfo(float).eps: R = np.eye(3) V = np.eye(3) else: axis = omega / theta sin_theta = np.sin(theta) cos_theta = np.cos(theta) R = (cos_theta * np.eye(3)) + ((1-cos_theta)*np.outer(axis,axis))+(sin_theta*skew_omega) A = (1-np.cos(theta))/(theta**2) B = (theta-sin_theta)/(theta**3) V = np.eye(3)+(A*skew_omega)+(B*np.dot(skew_omega,skew_omega)) p = np.dot(V,v) T = np.block([ [R , p.reshape(-1,1)], [np.zeros((1,3)), [[1]] ] ]) return T ``` 此代码片段展示了如何基于李代数se(3)中的六维向量ξ构造对应的SE(3)变换矩阵T。这有助于理解底层理论的同时也为具体的工程实践提供了工具支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jiqiang_z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值