pytorch笔记: 搭建Skip—gram

skip-gram 理论部分见:NLP 笔记:Skip-gram_刘文巾的博客-CSDN博客

1 导入库

import numpy as np
import torch
from torch import nn, optim
import random
from collections import Counter
import matplotlib.pyplot as plt

2 数据集部分

2.1 训练数据

#训练数据
text ='I like dog i like cat i like \
animal dog cat animal apple \
cat dog like dog fish milk like dog \
cat eyes like i like apple apple \
i hate apple i movie book music like \
cat dog hate cat dog like he is man she\
is woman king is man queen is woman'

2.2 参数设置

#参数设置
EMBEDDING_DIM = 2 #词向量维度
PRINT_EVERY = 1000 #可视化频率
EPOCHS = 1000 #训练的轮数
BATCH_SIZE = 5 #每一批训练数据大小
N_SAMPLES = 3 #负样本大小
WINDOW_SIZE = 5 #最大背景词窗口大小
FREQ = 0 #词汇出现频率,低于这个的词汇将被删除
DELETE_WORDS = False #是否删除部分高频词(是否二次采样)

2.3 文本预处理

2.3.1 保留一定数目以上词频的词汇

#文本预处理
def preprocess(text, FREQ):
    text = text.lower()
    words = text.split()
    
    word_counts = Counter(words)
    #计算每个词出现的次数
    
    trimmed_words = []
    for word in words :
        if word_counts[word] > FREQ:
            trimmed_words.append(word)
    return trimmed_words
words = preprocess(text, FREQ)
#保留下词汇出现频率大于等于FREQ的词
'''
['i',
 'like',
 'dog',
 'i',
 'like',
 'cat',
 'i',
 'like',
 'animal',
 'dog',
 'cat',
 'animal',
 'apple',
 'cat',
 'dog',
...
'''

2.3.2 构建word<->num的字典

#构建词典 word<->num;num<->word
vocab = set(words)
vocab2int = {}
int2vocab = {}
for c, w in enumerate(vocab):
    vocab2int[w]=c
    int2vocab[c]=w
vocab2int,int2vocab
'''
({'music': 0,
  'movie': 1,
  'book': 2,
  'he': 3,
  ...

 {0: 'music',
  1: 'movie',
  2: 'book',
 ...
​'''

2.3.3 将words中的词汇id化

#将文本转化为数值
int_words = []
for w in words:
    int_words.append(vocab2int[w])
int_words
'''
[6,
 4,
 12,
 6,
 4,
 13,
 6,
 4,
 9,
 12,
...
'''

2.3.4 计算词频

#计算单词频次
int_word_counts = Counter(int_words)
total_count = len(int_words)
word_freqs={}
for w, c in int_word_counts.items():
    word_freqs[w]=c/total_count
word_freqs
'''
{6: 0.11320754716981132,
 4: 0.16981132075471697,
 12: 0.1320754716981132,
 13: 0.11320754716981132,
...
'''

2.3.5 二次采样(去除出现频率过高的词汇)

#二次采样:去除出现频次高的词汇
if DELETE_WORDS:
    t = 1e-5
    prob_drop = {}
    for w in int_word_counts:
        prob_drop[w]=1-np.sqrt(t/word_freqs[w])
        #每个word的丢弃概率
    train_words=[]
    for w in int_words:
        if(random.random()<(1-prob_drop[w])):
            train_words.append(w)
else:
    train_words = int_words

2.3.6 选作负样本的概率

word_freqs = np.array(list(word_freqs.values()))
noise_dist = torch.from_numpy(word_freqs ** (0.75) / np.sum(word_freqs ** (0.75)))

noise_dist
'''
tensor([0.0969, 0.1314, 0.1088, 0.0969, 0.0425, 0.0715, 0.0253, 0.0253, 0.0253,
        0.0425, 0.0253, 0.0253, 0.0253, 0.0253, 0.0715, 0.0425, 0.0253, 0.0425,
        0.0253, 0.0253], dtype=torch.float64)
'''

2.3.7 获取中心词周围的背景词

#获取目标词汇(中心词的背景词)
def get_target(words, idx, WINDOW_SIZE):
        target_window = np.random.randint(1, WINDOW_SIZE+1)
        #当前窗口的大小,窗口大大小可以灵活调整,这样训练得到的效果会更好

        if (idx-target_window)>0:
            start_point = idx-target_window
            #预测窗口的第一个下标
        else:
            start_point=0
            
        if(idx+target_window<len(words)):
            end_point = idx+target_window
            #预测窗口的最后一个下标
        else:
            end_point=len(words)-1
        
        targets = set(words[start_point:idx]+words[idx+1:end_point+1])
        #预测窗口区间中不同的单词
        return list(targets)
#得到的就是以idx下标处的单词为中心词,一定窗口大小的背景词

2.3.8 生成一个一个batch

#批次化数据
def get_batch(words, BATCH_SIZE, WINDOW_SIZE):
    n_batches = len(words)//BATCH_SIZE
    #我们的单词一共需要划分成几个batch
    
    words = words[:n_batches*BATCH_SIZE]
    #这里我们是把最后多出来的几个词剔除掉了
    
    for idx in range(0, len(words), BATCH_SIZE):
        batch_x, batch_y = [],[]
        batch = words[idx:idx+BATCH_SIZE]
#当前batch所涉及的单词
    
        for i in range(len(batch)):
            x = batch[i]
            y = get_target(batch, i, WINDOW_SIZE)
我们记y返回的窗口size为k_i(一个batch里面不同的i可能窗口的size是不一样的)
    
            batch_x.extend([x]*len(y))
#batch_x:[k_i]
            batch_y.extend(y)
#batch_y:[k_i]
    
        yield batch_x, batch_y
        #每次输出当前的这一组batch_x和batch_y,待下一次调用的时候,生成下一组
#batch_x:[sigma{k_i}]
#batch_y:[sigma{k_i}]

 3 定义模型

class SkipGramNeg(nn.Module):
    def __init__(self, n_vocab, n_embed, noise_dist):
        super().__init__()
        
        self.n_vocab = n_vocab
        #输入的单词数量(len(vocab2int))

        self.n_embed = n_embed
        #中间词向量的维度(EMBEDDING_DIM)

        self.noise_dist = noise_dist
        #定义词向量层(每个词被选成负样本的概率)
        #noise_dist [n_vocab]
        
        self.in_embed = nn.Embedding(n_vocab, n_embed)
        #中心词对应的权重矩阵
#维度 n_vocab->n_embed

        self.out_embed = nn.Embedding(n_vocab, n_embed)
        #背景词对应的权重矩阵
#维度 n_vocab->n_embed 
       
        #词向量层参数初始化
        self.in_embed.weight.data.uniform_(-1, 1)
        self.out_embed.weight.data.uniform_(-1, 1)
        #将参数的范围限定在(-1,1)
        
    #输入词的前向过程(对应 input->hidden)
    #作为中心词的向量表示
    def forward_input(self, input_words):
#k_i表示一个batch每个i的窗口大小
#input_words [sigma{k_i}]
        input_vectors = self.in_embed(input_words)
        return input_vectors
#input_vectors [sigma{k_i},n_embed]
    
    #目标词的前向过程(在中心词窗口内的背景词的编码)
    #作为背景词的向量表示
    def forward_output(self, output_words):
#output_words [sigma{k_i}]
        output_vectors = self.out_embed(output_words)
        return output_vectors
#output_vectors [sigma{k_i},n_embed]
    
    #负样本词的前向过程
    def forward_noise(self, size, N_SAMPLES):
        noise_dist = self.noise_dist
        #从词汇分布(各单词选作负样本的概率)中采样负样本
        
        noise_words = torch.multinomial(noise_dist,
                                        size * N_SAMPLES,
                                        replacement=True)
        #从词汇分布中有放回地选择size * N_SAMPLES个样本(每个word pair配N_SAMPLES个负样本)
        noise_vectors = self.out_embed(noise_words).view(size, N_SAMPLES, self.n_embed)
        return noise_vectors
    #noise_vectors [sigma{k_i},N_SAMPLES,n_embed]

4 定义损失函数

负采样见NLP 笔记:Skip-gram_刘文巾的博客-CSDN博客

class NegativeSamplingLoss(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input_vectors, output_vectors, noise_vectors):
        #k_i表示一个batch每个i的窗口大小
        #input_vectors [sigma{k_i},n_embed]
        #output_vectors [sigma{k_i},n_embed]
        #noise_vectors [sigma{k_i},N_SAMPLES,n_embed]
        BATCH_SIZE, embed_size = input_vectors.shape
        
#将输入词向量与目标词向量作维度转化处理        
        input_vectors = input_vectors.view(BATCH_SIZE, embed_size, 1)
        #input_vectors [sigma{k_i},n_embed,1]

        output_vectors = output_vectors.view(BATCH_SIZE, 1, embed_size)
        #output_vectors [sigma{k_i},1,n_embed]

        
        test = torch.bmm(output_vectors, input_vectors)
#test [sigma{k_i},1,1]
        #也就是中心词和背景词的条件概率,即u_o^T v_c


        #目标词的loss
        out_loss = torch.bmm(output_vectors, input_vectors).sigmoid().log()
#out_loss [sigma{k_i},1,1]
        out_loss = out_loss.squeeze()
#out_loss [sigma{k_i}]
        
        
        #负样本损失
        noise_loss = torch.bmm(noise_vectors.neg(), input_vectors).sigmoid().log()
#noise_loss [sigma{k_i},N_SAMPLES,1]
        noise_loss = noise_loss.squeeze().sum(1)
#noise_loss [sigma{k_i},1]
        #综合计算两类损失

#目标是让正样本概率大,负样本概率小,也就是两个loss的和越大越好
#但损失函数是要最小化, 所以前面要加一个-
        return -(out_loss + noise_loss).mean()

 5 模型的声明、损失函数和优化函数的定义

model = SkipGramNeg(len(vocab2int),
                    EMBEDDING_DIM, 
                    noise_dist=noise_dist)
criterion = NegativeSamplingLoss()
optimizer = optim.Adam(model.parameters(), lr=0.003)

 6 模型的训练

#训练
steps = 0
for e in range(EPOCHS):
    #获取输入词以及目标词
    for input_words, target_words in get_batch(train_words, BATCH_SIZE, WINDOW_SIZE):
#input_words [sigma{k_i}]
#target_words [sigma{k_i}]

        steps += 1

        inputs, targets = torch.LongTensor(input_words), torch.LongTensor(target_words)
        
#输入、输出以及负样本向量
        input_vectors = model.forward_input(inputs)
#k_i表示一个batch每个i的窗口大小
#input_vectors [sigma{k_i},n_embed]

        output_vectors = model.forward_output(targets)
#output_vectors [sigma{k_i},n_embed]

        size, _ = input_vectors.shape
#size:sigma{k_i}
 
        noise_vectors = model.forward_noise(size, N_SAMPLES)
#noise_vectors [sigma{k_i},N_SAMPLES,n_embed]
        

#计算损失
        loss = criterion(input_vectors, output_vectors, noise_vectors)
        #打印损失
        if steps%PRINT_EVERY == 0:
            print("loss:",loss)
        #梯度回传
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()


'''
loss: tensor(2.3455, grad_fn=<NegBackward>)
loss: tensor(1.6729, grad_fn=<NegBackward>)
loss: tensor(1.6398, grad_fn=<NegBackward>)
loss: tensor(1.5920, grad_fn=<NegBackward>)
loss: tensor(1.4348, grad_fn=<NegBackward>)
loss: tensor(1.5463, grad_fn=<NegBackward>)
loss: tensor(1.4360, grad_fn=<NegBackward>)
loss: tensor(1.6348, grad_fn=<NegBackward>)
loss: tensor(1.4676, grad_fn=<NegBackward>)
loss: tensor(1.6141, grad_fn=<NegBackward>)
'''

7 结果可视化

NLP 笔记:Skip-gram_刘文巾的博客-CSDN博客 第4条第3)小条所言,权重矩阵的每一行对应的是一个点在稠密空间上的编码

plt.figure(figsize=(20,10))
for i, w in int2vocab.items():
    vectors = model.state_dict()["in_embed.weight"]
    x,y = float(vectors[i][0]),float(vectors[i][1])
    plt.scatter(x,y)
    plt.annotate(w, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')

plt.show()

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值