1 题目描述
2 解题思路
2.1 前缀和
建立一个前缀和数据,来记录 sum(A[0~n])。那么sum(A[i,j])=sum(A[0~j])-sum(A[0~i-1])
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
tmp=[0]
for i in nums:
tmp.append(tmp[-1]+i)
ma=-1000000
l=len(tmp)
for i in range(l):
for j in range(i+1,l):
if(tmp[j]-tmp[i]>ma):
ma=tmp[j]-tmp[i]
return(ma)
这样是最耗时的
2.2 动态规划
我们设立一个present_val 表示包括当前要遍历的数值的情况下,当前最大的区间和
其中,present_val满足:present_val=max(present_val+i,i)
present_ret表示目前最大的区间和,满足:present_ret=max(present_ret,present_val)
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
present_val=-100000
present_ret=-100000
for i in nums:
present_val=max(present_val+i,i)
present_ret=max(present_ret,present_val)
return(present_ret)
2.3 分治
最后一个做法是leetcode官方给出的一种题解
import math
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
def get(l,r):
if(l==r):
#如果只有一个元素的时候,回溯
return nums[l],nums[l],nums[l],nums[l]
else:
m=(l+r)//2
#寻找中点
lSum_l,rSum_l,mSum_l,iSum_l=get(l,m)
lSum_r,rSum_r,mSum_r,iSum_r=get(m+1,r)
#得到左子区间和右子区间的lSum,rSum,mSum和iSum
lSum=max(lSum_l,iSum_l+lSum_r)
rSum=max(rSum_r,iSum_r+rSum_l)
mSum=max(mSum_l,mSum_r,lSum_r+rSum_l)
iSum=iSum_r+iSum_l
return lSum,rSum,mSum,iSum
return get(0,len(nums)-1)[2]