文巾解题 53. 最大子序和

这篇博客介绍了三种解决最大子数组和问题的方法:前缀和、动态规划和分治策略。动态规划方法通过维护当前最大区间和以及总的最大区间和,实现线性时间复杂度的解决方案。而分治策略则是将问题分解为子问题,通过递归求解。每种方法都有其时间和空间效率上的考量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 题目描述

2 解题思路

2.1 前缀和

建立一个前缀和数据,来记录 sum(A[0~n])。那么sum(A[i,j])=sum(A[0~j])-sum(A[0~i-1])

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        tmp=[0]
        for i in nums:
            tmp.append(tmp[-1]+i)
        ma=-1000000
        l=len(tmp)
        for i in range(l):
            for j in range(i+1,l):
                if(tmp[j]-tmp[i]>ma):
                    ma=tmp[j]-tmp[i]
        return(ma)

 

这样是最耗时的

2.2 动态规划

        我们设立一个present_val 表示包括当前要遍历的数值的情况下,当前最大的区间和

        其中,present_val满足:present_val=max(present_val+i,i)

        present_ret表示目前最大的区间和,满足:present_ret=max(present_ret,present_val)

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        present_val=-100000
        present_ret=-100000
        for i in nums:
            present_val=max(present_val+i,i)
            present_ret=max(present_ret,present_val)
        return(present_ret)

 

 2.3 分治

最后一个做法是leetcode官方给出的一种题解

 

 

import math
class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        def get(l,r):
            if(l==r):
                #如果只有一个元素的时候,回溯
                return nums[l],nums[l],nums[l],nums[l]
            else:
                m=(l+r)//2
                #寻找中点
                lSum_l,rSum_l,mSum_l,iSum_l=get(l,m)
                lSum_r,rSum_r,mSum_r,iSum_r=get(m+1,r)
                #得到左子区间和右子区间的lSum,rSum,mSum和iSum

                lSum=max(lSum_l,iSum_l+lSum_r)
                rSum=max(rSum_r,iSum_r+rSum_l)
                mSum=max(mSum_l,mSum_r,lSum_r+rSum_l)
                iSum=iSum_r+iSum_l
                
                return lSum,rSum,mSum,iSum
        return get(0,len(nums)-1)[2]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值