BPMF论文辅助笔记:采样Ui 部分推导

该部分是论文笔记 Bayesian Probabilistic Matrix Factorizationusing Markov Chain Monte Carlo (ICML 2008)_UQI-LIUWJ的博客-CSDN博客

 3.3.3 小节的推导

1 推导

 固定V , R , ΘU,更新U,其中需要满足的条件概率是

 

 同样利用条件概率:

 

BPMF论文辅助笔记: 固定U,更新θU 部分推导_UQI-LIUWJ的博客-CSDN博客我们计算得到:

p(U|\theta_U)=\prod _i (\frac{1}{(2\pi)^{\frac{D}{2}}(\Lambda_U^{-1})^{\frac{1}{2}}}e^{-\frac{1}{2}(U_i-\mu_U)^T(\Lambda_U)(U_i-\mu_U)})

                   =(2\pi)^{-\frac{DN}{2}}(\Lambda_U)^{\frac{N}{2}}e^{(-\frac{1}{2}\sum_{i=1}^N(U_i-\mu_U)^T(\Lambda_U)(U_i-\mu_U))}

同时 p(R) \sim N(U^TV,\alpha^{-1})=\prod_{ij}N(U_i^TV_j,\alpha^{-1})

 因而 p(U|R,V)=p(U|R,V)=(2\pi)^{-\frac{MN}{2}}(\Lambda_U)^{\frac{MN}{2}}e^{(-\frac{1}{2}\sum_{ij}(R_ij-U_i^TV_j)^T\alpha(R_ij-U_i^TV_j))}

 

   由于两个高斯函数的乘积仍然是高斯函数,故待求概率也是高斯分布

 而我们中有:(一次项二次项是针对U来说的)

 

 

  所以我们可以推出所满足的高斯分布的均值和协方差矩阵:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值