有负权重边的图可以有拉普拉斯矩阵吗?

本文讨论了图论中拉普拉斯矩阵的性质,特别是在存在负权重边的情况下是否仍能保持半正定性。作者指出,当图包含负权重边时,拉普拉斯矩阵的半正定性质可能不成立,因为负权重可能导致矩阵特征值为复数,违反了半正定矩阵的要求。这一分析引发了对于负权重图拉普拉斯矩阵存在的疑问。
摘要由CSDN通过智能技术生成

        在 看论文Temporal Regularized Matrix Factorization for  High-dimensional Time Series Prediction的时候,看到了这样的一句话:

‘However, such graph-based regularization fails in cases where there are negative correlations between two time points.’

        于是我就在想,有负权重边的图可以有拉普拉斯矩阵吗?

        个人的判断是不可以的。下面给出原因。(如果不对,还请评论区批评指正)

        首先,拉普拉斯矩阵的一个性质就是它是半正定矩阵。而半正定矩阵的意思是,对所有向量f,f^TAf\geq 0.

        于是问题转换为,如果图有负权重边,那么拉普拉斯矩阵的这一性质成立吗?

        我们进行推导:

        如果图是一个非负矩阵,那么显然拉普拉斯矩阵式半正定的,性质成立。

        如果矩阵中有负权重边,那么我们让负权重边对应的(fi-fj)^2很大,别的正权重边对应的很小。那么此时上式有可能是一个复数。但是半正定又是对所有的向量都需要成立。所以负权重图可能就不存在拉普拉斯矩阵了。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值