机器学习笔记:向量自回归模型VAR

本文探讨了时间序列分析中的向量自回归模型,通过引入多元时间序列的概念,阐述了如何将输入和输出视为N维向量,并使用最小二乘法求解自回归模型的最优系数矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 向量自回归模型 

时间序列分析从单一时间序列 拓展到了多元时间序列,在任意第t 个时刻,观测样本从 一维变成了N维 

给定多元时间序列数据Y \in R^{N\times T},对于任意第t个时间间隔,有:

 

 换一个角度看A_k,可以看成是个input 为N维,output为N维的fully-connected layer

2 自回归模型 最优解

我们令

 

则自回归模型可以改写为:

 

将向量拼成矩阵,有:

其中

 

对此采用最小二乘法,可以求得系数矩阵A的最优解

其中 第一行<——>第二行的推导可见

参考资料

时间序列分析 | 向量自回归模型 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值