python 笔记 haversine (两个经纬度坐标之间的距离)

该博客介绍了如何利用Python的haversine库计算地球上两点经纬度之间的距离,支持多种单位转换,如公里、英里等。同时,展示了inverse_haversine函数用于根据距离和方向计算新坐标,以及haversine_vector函数用于批量计算多个点之间的距离。这些功能在地理信息系统和导航应用中非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 安装包

pip install haversine

2 haversine:计算两个点经纬度之间的距离

from haversine import haversine
lyon = (45.7597, 4.8422)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
#392.2172595594006 默认是公里

haversine(lyon, paris, unit=Unit.MILES)
#单位设置为英里
#243.71250609539814

haversine(lyon, paris, unit='mi')
#243.71250609539814

3 Unit——支持的所有单位

from haversine import Unit

tuple(Unit)
'''
(<Unit.KILOMETERS: 'km'>,
 <Unit.METERS: 'm'>,
 <Unit.MILES: 'mi'>,
 <Unit.NAUTICAL_MILES: 'nmi'>,
 <Unit.FEET: 'ft'>,
 <Unit.INCHES: 'in'>,
 <Unit.RADIANS: 'rad'>,
 <Unit.DEGREES: 'deg'>)
'''

4 inverse haversine

        从给定的向量(距离和方向)和起点计算点。

        目前明确支持(北,东,南,西)和(东北,东南,西南,西北)方向。但也允许以弧度表示的角度。

from haversine import inverse_haversine, Direction
from math import pi
paris = (48.8567, 2.3508) # (lat, lon)

inverse_haversine(paris, 32, Direction.WEST)
#(48.85587279023947, 1.9134085092836945)

inverse_haversine(paris, 50, Direction.NORTH, unit=Unit.MILES)
#(49.58035791599536, 2.3508

inverse_haversine(paris, 32, pi * 1.25)
#(48.65279552300661, 2.0427666779658806)

5 haversine_vector

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon,lyon], [paris, new_york,lyon], Unit.KILOMETERS)
#array([ 392.21725956, 6163.43638211,    0.        ])
#分别是 lyon-paris,lyon-new_york,lyon-lyon的距离

5.1  comb=True

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)
'''
array([[ 392.21725956,  343.37455271],
       [6163.43638211, 5586.48447423]])
'''

 

可以使用 Haversine 公式来计算两个经纬度坐标之间距离Haversine 公式基于球面三角形的一些性质,可以近似计算地球上两点之间的直线距离。 以下是使用 Haversine 公式计算两个经纬度坐标之间距离的 Vue 代码示例: ```javascript // 计算两个经纬度之间距离 function getDistance(lat1, lon1, lat2, lon2) { const R = 6371; // 地球半径,单位为公里 const dLat = deg2rad(lat2 - lat1); const dLon = deg2rad(lon2 - lon1); const a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * Math.sin(dLon / 2) * Math.sin(dLon / 2); const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); const d = R * c; // 距离,单位为公里 return d; } // 将角度转换为弧度 function deg2rad(deg) { return deg * (Math.PI / 180); } // 示例:计算北京和上海之间距离 const distance = getDistance(39.9042, 116.4074, 31.2304, 121.4737); console.log(distance); // 输出结果:1068.3100608591576 ``` 在上面的代码中,`getDistance` 函数接受四个参数:`lat1`、`lon1`、`lat2` 和 `lon2`,分别代表两个经纬度坐标的纬度和经度。该函数先将两个经纬度坐标转换为弧度,然后根据 Haversine 公式计算两点之间距离。最后,函数返回距离,单位为公里。 可以将上面的代码用于 Vue 项目中,例如在组件的方法中调用 `getDistance` 函数来计算两个经纬度坐标之间距离
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值