机器学习笔记:李宏毅diffusion model

1 概念原理

  • 首先sample 一个都是噪声的vector
  • 然后经过denoise network 过滤一些杂质
  • 接着继续不断denoise,直到最后出来一张清晰图片

  • 【类似于做雕塑,一开始只是一块石头(噪声很杂的雕塑),慢慢雕刻出想要的花纹】

 

 

  • 同一个denoise network的模型反复使用
  • 但每一个stage输入的图片的状况差异很大
  • ——>完全是同一个模型效果不一定好

  • denoise network还多需要一个输入,野鸡现在denoise的阶段
    • 1表示denoise快结束了的阶段
    • 1000表示刚开始denoise的阶段

2   denoise内部原理

  •  预测图片里面的噪声长什么样
  • 输入图片减去输出的噪声,得到这一轮去噪后的图片
    • 预测noise的原因:产生图片和产生noise 难度是不一样的

2.1 noise predictor的ground truth

那么如何训练noise predictor,换句话说,怎么找到ground-truth呢

 

  •  从资料库中拿出图片
  • 再从高斯分布/或者其他分布中产生噪声
  • 将这个噪声加入图片中,就有了带噪声的图片

 这样就形成了一对一对的 输入和ground-truth ,供noise predictor 训练

3 用文字生成图片

如果我们是提供给diffusion model 文字,让他生成图片

 整体的框架没有多少变化,就是 denoise model 输入多了一个文字的vector

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值