论文笔记 Understanding Electricity-Theft Behavior via Multi-Source Data

WWW 2020 oral

1 INTRO

1.1 背景

1.1.1 窃电

  • 窃电(electricity theft)指用户为了逃避电费而进行非法操作的一种行为
  • 常用的反窃电方法可分为两类:

    • 基于硬件驱动的反窃电方法

      • ​​​​​​​电表开盖检测、集中器检测。。。。

      • 硬件驱动的方法响应快,定位准,但需要非常专业的领域知识,同时随着窃电策略的改变会随即失效

    • 基于数据驱动的反窃电方法

      • ​​​​​​​​​​​​​​分析用户用电时序曲线、分析台区线损时序曲线

      • 数据驱动的方法可以全盘监控全网用电数据,通过机器学习、人工智能等前沿方法可以及时跟进不断变化的窃电策略。

      • 但由于可信案例稀少,数据海量且用户行为复杂,简单的时序建模方法很难取得较好的准确率。

1.1.2 论文思路

  • 提出了Hierarchical Electricity-theft Behavior Recognition (HEBR) 模型,
    • 同时组合多源时序数据用于更准确的窃电行为识别
    • 发现气温变化与用户用电行为之间的密切关系

2 三层数据

2.1 数据介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值