shapely 笔记 voronoi图

Voronoi 图是一种将平面分割成区域的方法,每个区域包含一个输入点,任何在该区域内的点都比其他输入点更接近该区域的输入点

1 基本使用方法

shapely.ops.voronoi_diagram(
    geom, 
    envelope=None, 
    tolerance=0.0, 
    edges=False)

2 参数说明

geom任何几何类型。几何体的所有顶点将被用作 Voronoi 图的输入点
edges如果为 False,将返回一个多边形列表。否则,返回一个 LineString 边的列表

3 举例

from shapely.ops import voronoi_diagram
points = MultiPoint([(0, 0), (1, 1), (0, 2), (2, 2), (3, 1), (1, 0)])
points

regions = voronoi_diagram(points)
regions

### 创建加权 Voronoi 的理论背景 加权 Voronoi 是对传统 Voronoi 的一种扩展形式,它考虑了生成元的不同权重来调整其影响范围。这种技术广泛应用于地理信息系统 (GIS),特别是在非匀质空间下的资源分配、服务覆盖范围评估等领域[^4]。 在 ArcGIS 中,虽然原生工具支持生成标准的 Voronoi 多边形(即泰森多边形),但对于加权 Voronoi 的支持较为有限。因此,通常需要借助 Python 脚本或其他第三方插件完成此类任务[^5]。 --- ### 方法一:通过 ArcPy 和自定义脚本实现加权 Voronoi 可以利用 Python 编程语言结合 ArcPy 库,在 ArcGIS 平台中实现加权 Voronoi 的计算过程。以下是具体实现方式: #### 数据准备 1. 准备输入点要素数据集,其中每一点应具有对应的权重字段。 2. 确保安装有 ArcGIS 的高级许可版本以启用 `arcpy` 功能模块。 #### 实现代码 以下是一个基于 C# 加权算法思路改编的 Python 示例代码[^1],适用于 ArcGIS Pro 或桌面版环境: ```python import arcpy from shapely.geometry import Point, Polygon from scipy.spatial import Voronoi import numpy as np def weighted_voronoi(points, weights): """ 计算带权重的Voronoi :param points: 输入点坐标列表 [(x1,y1), ...] :param weights: 权重列表 [w1,w2,...], 需要与points一一对应 :return: 返回加权后的Voronoi区域集合 """ adjusted_points = [] max_weight = max(weights) for i, pt in enumerate(points): w = weights[i] factor = (max_weight / w)**0.5 # 基于权重缩放因子 adj_x = pt[0] * factor adj_y = pt[1] * factor adjusted_points.append((adj_x, adj_y)) vor = Voronoi(adjusted_points) regions, vertices = {}, [] for index, region in enumerate(vor.regions): if not -1 in region and len(region) > 0: poly_vertices = [vor.vertices[i] for i in region] original_region = Polygon(poly_vertices).buffer(0) regions[index] = original_region return regions if __name__ == "__main__": input_fc = r"path_to_input_feature_class" weight_field = "WeightField" with arcpy.da.SearchCursor(input_fc, ["SHAPE@", weight_field]) as cursor: points = [] weights = [] for row in cursor: geom = row[0] point = (geom.firstPoint.X, geom.firstPoint.Y) weight = row[1] points.append(point) weights.append(weight) result_regions = weighted_voronoi(points, weights) output_fc = r"path_to_output_feature_class" spatial_ref = arcpy.Describe(input_fc).spatialReference arcpy.CreateFeatureclass_management( out_path=os.path.dirname(output_fc), out_name=os.path.basename(output_fc), geometry_type="POLYGON", spatial_reference=spatial_ref ) with arcpy.da.InsertCursor(output_fc, ["SHAPE@"]) as insert_cursor: for polygon in result_regions.values(): array = arcpy.Array([arcpy.Point(*coord) for coord in list(polygon.exterior.coords)]) insert_cursor.insertRow([Polygon(array)]) ``` 上述代码实现了对输入点数据及其权重进行处理并生成相应的加权 Voronoi 区域。 --- ### 方法二:使用 QGIS 插件间接辅助 尽管 ArcGIS 自身未提供直接生成加权 Voronoi 的功能,但可以通过导出数据至 QGIS,并利用 **MMQGIS** 插件中的 “Create Weighted Voronoi Diagrams” 工具快速生成所需结果后再导入回 ArcGIS 进一步编辑或分析[^3]。 --- ### 方法三:调用外部库集成到模型构建器 对于更加复杂的场景需求,还可以尝试将 SciPy 或 Shapely 等科学计算库引入 ModelBuilder 流程当中,从而达到无缝衔接的效果。这种方法灵活性较高但也相对复杂一些[^2]。 --- ### 注意事项 - 当前方法假设所有参与运算的数据均为平面直角坐标系下表示;如果是球面坐标,则需额外转换操作。 - 如果项目涉及大规模数据量或者高性能要求场合,建议优化算法性能并通过分布式框架进一步提升效率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值