数据集笔记:METR-la 原始数据转input/ground truth

本文指导如何将Metr-La数据集调整为适合交通预测模型的N*T*12格式,涉及数据切片、偏移处理和划分训练集-验证集-测试集的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 问题介绍

在交通预测/时间序列预测的论文中(如论文笔记:Dual Dynamic Spatial-Temporal Graph ConvolutionNetwork for Traffic Prediction_dual dynamic spatial-temporal graph convolution ne-CSDN博客

模型输入的是过去12个时间片的内容,预测未来12个时间片的内容,而metrla数据集的格式是N*T,那怎么将原始数据集变成N*T*12的格式(test/train数据集)呢?

1 读取metr-la

import pandas as pd

df = pd.read_hdf('metr-la.h5')
df

2 输入x和ground-truth y的offset设置

x_offsets=np.arange(-11, 1, 1)
x_offsets
#array([-11, -10,  -9,  -8,  -7,  -6,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值