论文笔记:Take a Step Back:Evoking Reasoning via Abstraction in Large Language Models

本文探讨了如何通过退一步提示法提升大语言模型(LLM)的性能,特别是在STEM领域的实验,如MMLU测试。研究发现这种方法在处理抽象问题和推理时存在挑战,尤其是推理错误和数学错误。同时,文章分析了KnowledgeQA和Multi-HopReasoning任务中的表现与优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ICLR 2024 reviewer 打分 888

1 论文思路

  • 思路很简单,在进行prompt的时候,先后退一步,从更宏观的角度来看问题,让LLM对问题有一个整体的理解;然后再回到detail上,让模型回答更具体的问题

2 实验——STEM

 MMLU 高中物理和化学基准测试

2.1 实验效果

2.2 few-shot 例子数量的影响

2.3 错误案例分析

  • 原则错误:错误发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值