论文笔记:Chain-of-Table:EVOLVING TABLES IN THE REASONING CHAIN FOR TABLE UNDERSTANDING

本文探讨了如何通过提出CHAIN-OF-TABLE方法,使自然语言模型更好地理解和处理复杂的表格数据,通过分解表格操作步骤并动态生成指令,以提高表格推理的效率。研究还包含了实验对比和原子操作分析,展示了这种方法在表格理解与问题解答上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ICLR 2024 reviewer评分 5566

1 intro

1.1 背景

  • 表格是一种流行的数据格式,在日常生活中被广泛使用
    • 与纯文本不同,表格通过行和列之间的交互提供丰富的信息,在增强数据容量的同时也增加了语言模型理解它们的难度
    • ——》对表格数据进行推理是自然语言处理中的一个重要方向

1.2 目前使用LLM的方法

通常将推理步骤表示为自由形式的文本或代码,这不太适合处理涉及复杂表格的场景

1.3 论文的思路 

  • 对表格的推理通常涉及一系列中间推理步骤,每个步骤都与特定的表格操作相对应
  • ——>提出了CHAIN-OF-TABLE,按步骤进行推理,将逐步表格操作形成一系列表格
    • 定义了一组表格操作,例如添加列、选择行、分组等
    • 提示LLMs进行逐步推理。
      • 在每一步中,LLMs动态生成一个操作作为下一步以及它所需的参数,然后在表格上以编程方式执行该操作
      • 可以通过添加详细的中间结果来丰富表格,也可以通过删除无关信息来压缩表格
      • 将转换后的表格反馈给下一步
      • 这个迭代过程持续进行,直到达到结束状态
  • ——>CHAIN-OF-TABLE推理产生的表格更容易让LLMs得出问题的最终答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值