ICLR 2024 reviewer评分 5566
1 intro
1.1 背景
- 表格是一种流行的数据格式,在日常生活中被广泛使用
- 与纯文本不同,表格通过行和列之间的交互提供丰富的信息,在增强数据容量的同时也增加了语言模型理解它们的难度
- ——》对表格数据进行推理是自然语言处理中的一个重要方向
1.2 目前使用LLM的方法
通常将推理步骤表示为自由形式的文本或代码,这不太适合处理涉及复杂表格的场景
1.3 论文的思路
- 对表格的推理通常涉及一系列中间推理步骤,每个步骤都与特定的表格操作相对应
- ——>提出了CHAIN-OF-TABLE,按步骤进行推理,将逐步表格操作形成一系列表格
- 定义了一组表格操作,例如添加列、选择行、分组等
- 提示LLMs进行逐步推理。
- 在每一步中,LLMs动态生成一个操作作为下一步以及它所需的参数,然后在表格上以编程方式执行该操作
- 可以通过添加详细的中间结果来丰富表格,也可以通过删除无关信息来压缩表格
- 将转换后的表格反馈给下一步
- 这个迭代过程持续进行,直到达到结束状态
- ——>CHAIN-OF-TABLE推理产生的表格更容易让LLMs得出问题的最终答案