论文略读:OpenGraph: Towards Open Graph Foundation Models

文章探讨了如何通过Graph+大模型在无监督的Zero-shot预测中处理不同数据集的Token变化,强调了有效处理节点间复杂关系以及应对训练数据稀缺问题。方法部分着重于统一图tokenizer的设计以实现跨数据集的高效特征提取和预测。
摘要由CSDN通过智能技术生成

arxiv 2023

1 intro

  • Graph+大模型
  • 希望OpenGraph能够捕捉通用的拓扑结构模式,对测试数据进行Zero-shot预测
    • 仅通过前向传播过程,就可以对测试图数据进行高效的特征提取和准确预测
    • 模型的训练过程在完全不同的图数据上进行,在训练阶段不接触测试图的任何元素
  • 为了达成这一目的,本文需要解决三个挑战:
    • C1. 跨数据集的Token集合变化
      • 零样本图预测任务的一个显著困难是,不同的图数据通常有完全不同的图token集合
    • C2. 高效的节点间关系建模
      • 在图学习领域,节点之间常常存在错综复杂的依赖关系,模型需要对节点的局部和全局邻域关系进行综合考量
    • C3. 训练数据稀缺

2 方法

2.1 统一 图tokenizer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值