arxiv 2023
1 intro
- Graph+大模型
- 希望OpenGraph能够捕捉通用的拓扑结构模式,对测试数据进行Zero-shot预测
- 仅通过前向传播过程,就可以对测试图数据进行高效的特征提取和准确预测
- 模型的训练过程在完全不同的图数据上进行,在训练阶段不接触测试图的任何元素
- 为了达成这一目的,本文需要解决三个挑战:
- C1. 跨数据集的Token集合变化
- 零样本图预测任务的一个显著困难是,不同的图数据通常有完全不同的图token集合
- C2. 高效的节点间关系建模
- 在图学习领域,节点之间常常存在错综复杂的依赖关系,模型需要对节点的局部和全局邻域关系进行综合考量
- C3. 训练数据稀缺
- C1. 跨数据集的Token集合变化