hugging face笔记:PEFT

1 介绍

  • PEFT (Parameter-Efficient Fine Tuning) 方法在微调时冻结预训练模型参数,并在其上添加少量可训练的参数(称为适配器)
  • 这些适配器被训练用来学习特定任务的信息。
  • 这种方法已被证明在内存效率和计算使用上非常高效,同时能产生与完全微调模型相当的结果
  • 使用PEFT训练的适配器通常比完整模型小一个数量级,这使得分享、存储和加载它们变得非常方便。
    • 例如,一个OPTForCausalLM模型的适配器权重在Hub上的存储只有约6MB
    • 相比之下,完整的模型权重可以达到约700MB。

2 加载 PEFT适配器

2.1 直接from_pretrained加载

  • 若要从 Transformers 加载和使用 PEFT 适配器模型,请确保 Hub 存储库或本地目录包含 adapter_config.json 文件和适配器权重
  • 然后,可以使用 AutoModel类加载 PEFT 适配器模型
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值