22 sigspatial
1 intro
- 提出了一种空间轨迹相似性度量的方法
- 比较了两种传统相似度度量的不足
- DTW
- 基本特征是它完全对齐序列以进行测量,而不考虑它们之间共享的局部特征
- 这适用于完全对齐的序列,但不适用于逐步对齐没有太多意义的序列
- BLEU
- 适用于不完全对齐的序列
- 将序列中的地点视为单词,它们的连续组合视为地理空间𝑛-gram,应用这种方法基于局部特征评估地理空间轨迹的相似性
- 然而,它也有另一个缺点:地理空间 𝑛-grams 需要完全相同才能被视为“匹配”,而非常接近但稍有偏移的不会对结果产生贡献。
- 换句话说,空间接近性是相似性的一个潜在重要属性,在使用BLEU时未被考虑
- DTW
——>论文基于 BLEU,提出了GEO-BLEU
2 GEO-BLEU
- 首先,引入地理空间 n-gram 的概念
- 将序列中的地点视为点,通过相似度得分 s(gi,gj)衡量两点的接近程度。
- 通过衡量点之间的欧几里得距离 d(gk,wk)并将其标准化来实现