2023 KDD
1 intro
1.1 背景
- 随着城市化进程的加快和电子商务的发展,最后一公里配送已成为一个关键的研究领域
- 最后一公里配送,如图1所示,是指连接配送中心和客户的包裹运输过程,包括包裹的取件和配送
- 除了对客户满意度至关重要外,最后一公里配送还是整个运输过程中最昂贵和最耗时的部分
- 路线规划
- 预计到达时间(ETA)预测
- 路线预测
- 这些研究的一个关键前提是高质量、大规模数据集的可用性。
- 然而,在最后一公里配送研究领域,虽然已经开发了大量算法,但仍缺乏广泛认可的、公开可用的数据集
- 因此,这一领域的研究主要集中在少数工业研究实验室中,限制了透明度并阻碍了研究进展。
1.2 论文思路
- 提出了LaDe,这是由菜鸟收集的首个综合性最后一公里配送数据集
- 包含了包裹的取件和配送数据
- Cainiao-AI/LaDe · Datasets at Hugging Face
- LaDe具有以下几个优点:
- (1) 大规模,涵盖了21,000名快递员在6个月内配送的10,677k个包裹
- 这是目前最大规模的公开数据集
- (2) 全面,提供了有关包裹、位置、任务事件和快递员的详细信息
- (3) 多样性,收集了来自不同城市的取件和配送过程的数据
- ——>凭借这些优势,LaDe可以用于评估与最后一公里相关的广泛任务
- (1) 大规模,涵盖了21,000名快递员在6个月内配送的10,677k个包裹
- 论文通过三个任务来研究其特性,包括路线预测、预计到达时间预测和时空图预测
2 相关工作
2.1 数据集视角
- 目前没有公开可用的最后一公里配送数据集同时包含包裹取件和配送数据
- 最接近的相关工作来自亚马逊[21](本文称为AmazonData)
- 这是一个由亚马逊提出的快递员执行的序列数据集,旨在为亚马逊主办的最后一公里路线研究挑战提供数据支持
- 包含了2018年亚马逊快递员在美国五个大都市区执行的9,184条历史路线
- D. Merchán, J. Arora, J. Pachon, K. Konduri, M.