迭代最近点(ICP)算法-手动实现

本文详细介绍了迭代最近点(ICP)算法,包括算法原理、具体求解过程,以及如何在点云精配准中应用。ICP算法是一种基于最小二乘最优匹配的配准算法,通过迭代求解点云之间的旋转平移矩阵。文章还提供了代码实现,使用Eigen库完成矩阵操作。尽管ICP广泛应用,但需注意初始位置选择和局部最优问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、算法介绍

1 引言

2 具体求解过程

二、代码实现

1 头文件

2.源文件

总结


一、算法介绍

1 引言

        在点云粗配准之后,我们还需要对点云进行精配准。对于点云的精配准问题,学者们提出了许多不同的算法,例如点标记法、自旋图像等,但其中应用最广泛、最为大众熟知的便是由Besl和Mckay于1992年提出的迭代最近点(Iterative Closest Point,ICP)算法。是最为经典的数据配准算法。其特征在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利用所求矩阵,将源点云变换到目标点云的坐标系下,估计变换后源点云与目标点云的误差函数,若误差函数值大于阀值,则迭代进行上述运算直到满足给定的误差要求.ICP算法本质上是一种基于最小二乘最优匹配思想的配准算法,它不需要事先知道对应的特征匹配点对,可以直接对点云进行操作,该算法流程简单,容易实现,在初始位置较好的情况下可以快速获得较好的配准结果。下面探讨ICP算法的实现原理。ICP算法通过迭代求解点云之间的最优旋转平移矩阵。其基本思想是选取欧式距离作为衡量是否为对应点的原则,建立对应点集;在此基础上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值