迭代最近点(ICP)算法-手动实现

本文详细介绍了迭代最近点(ICP)算法,包括算法原理、具体求解过程,以及如何在点云精配准中应用。ICP算法是一种基于最小二乘最优匹配的配准算法,通过迭代求解点云之间的旋转平移矩阵。文章还提供了代码实现,使用Eigen库完成矩阵操作。尽管ICP广泛应用,但需注意初始位置选择和局部最优问题。
摘要由CSDN通过智能技术生成

目录

一、算法介绍

1 引言

2 具体求解过程

二、代码实现

1 头文件

2.源文件

总结


一、算法介绍

1 引言

        在点云粗配准之后,我们还需要对点云进行精配准。对于点云的精配准问题,学者们提出了许多不同的算法,例如点标记法、自旋图像等,但其中应用最广泛、最为大众熟知的便是由Besl和Mckay于1992年提出的迭代最近点(Iterative Closest Point,ICP)算法。是最为经典的数据配准算法。其特征在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造旋转平移矩阵,并利用所求矩阵,将源点云变换到目标点云的坐标系下,估计变换后源点云与目标点云的误差函数,若误差函数值大于阀值,则迭代进行上述运算直到满足给定的误差要求.ICP算法本质上是一种基于最小二乘最优匹配思想的配准算法,它不需要事先知道对应的特征匹配点对,可以直接对点云进行操作,该算法流程简单,容易实现,在初始位置较好的情况下可以快速获得较好的配准结果。下面探讨ICP算法的实现原理。ICP算法通过迭代求解点云之间的最优旋转平移矩阵。其基本思想是选取欧式距离作为衡量是否为对应点的原则,建立对应点集;在此基础上

在MATLAB中,使用Iterative Closest Point (ICP) 算法通常用于云数据的配准,特别是当需要将一个模型精确地对齐到另一个模型上时。以下是使用MATLAB内置函数`icp`的基本步骤: 1. **准备数据**: - 导入两个集,比如源云(sourceCloud)和目标云(targetCloud),通常是通过读取文件如`.pts`或`.las`格式得到。 ```matlab sourceCloud = load('source_cloud.ply'); targetCloud = load('target_cloud.ply'); ``` 2. **初始匹配**: - 可能需要预处理云,例如移除噪声、平滑或采样。然后选择一对初始对应,这可以手动指定也可以使用某种策略自动计算。 3. **运行ICP**: - `icp`函数会迭代地寻找最佳的仿射变换(包括旋转和平移)来最小化对之间的欧几里得距离。 ```matlab [transformation, inlierIndex] = icp(sourceCloud, targetCloud); ``` `transformation`是一个包含旋转和平移信息的4x4矩阵,`inlierIndex`表示哪些被认为是配准后的匹配。 4. **评估结果**: - 可以检查残差误差(残差到对应的距离)以及匹配的比例来判断ICP的效果。 5. **应用变换**: - 应用从ICP获得的`transformation`到源云,得到对齐后的云。 ```matlab alignedSourceCloud = transformPoints(transformation, sourceCloud); ``` 6. **可视化结果**: - 可以使用`plot3`或`scatter3`等函数展示原始云、配准后的云以及它们的对应关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值