基于 RANSAC 的地面分割与聚类算法

本文介绍了基于RANSAC算法的3D点云地面分割与聚类方法,用于优化无人驾驶环境的点云信息处理。通过RANSAC迭代求最优直线拟合以去除地面点云,提升三维车辆检测精度。同时展示了代码实现和实验结果。
摘要由CSDN通过智能技术生成

文章目录

前言

一、算法原理

参考文献 

二、代码实现

1.头文件

2.源文件

3.测试文件

三、结果展示

1. 地面去除结果

2. 聚类 


前言

        激光雷达采集无人驾驶系统驾驶环境时,由于地面点云形状固定,增加点云信息计算量;同 时存在地面纹理杂乱并含有部分离群点,大幅度降低三维车辆检测的精度。


一、算法原理

        RANSAC 算法是剔除地面点云最简单的方法之一 , RANSAC 算法首先通过随机采样从测试点集中选取一个子集进行参数估计。运用所有测试数据集对该估计模型进行检验,根据测试样本集中 数据对模型的支持度,确定地面估计的正确性。 通过不断建立假设与检验的迭代,以期获取一个 具有全局最优的地面模型参数,即获得最优直线 拟合,具体实现步骤如表 2所示:

ROS(Robot Operating System)是一个开源的机器人软件框架,提供了一系列工具和库函数,可实现机器人软件开发中的常用功能。要实现地面分割和点云聚类,可以利用ROS的点云库PCL(Point Cloud Library)。 首先,需要使用ROS的点云消息类型sensor_msgs/PointCloud2来接收和发送点云数据。可以通过订阅ROS节点中发布的点云消息,实时获取点云数据。 地面分割是将点云数据中的地面点和非地面点进行区分的过程。可以使用PCL库中的地面分割算法,如RANSACRandom Sample Consensus)算法。该算法通过随机采样选择一组点,建立拟合平面模型,然后将与该模型拟合差异较小的点视为地面点。 点云聚类是将点云数据按照一定的条件进行分组的过程。可以使用PCL库中的欧几里得聚类算法(Euclidean Clustering),该算法通过计算点之间的欧几里得距离,将距离小于某个阈值的点视为同一聚类。 在ROS中,可以创建一个节点来实现地面分割和点云聚类。首先,订阅点云消息,然后调用PCL库中的地面分割和点云聚类算法,得到分割后的地面点和聚类结果。最后,可以通过ROS节点发布消息,将分割后的地面点和聚类结果发送给其他节点进行后续处理或可视化。 总结来说,实现ROS中的地面分割和点云聚类,可以利用ROS的点云库PCL,通过订阅和发布点云消息,调用地面分割和点云聚类算法进行处理,最终得到地面分割结果和点云聚类结果。这样可以实现机器人对点云数据进行地面识别和目标划分的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值