基于 RANSAC 的地面分割与聚类算法

本文介绍了基于RANSAC算法的3D点云地面分割与聚类方法,用于优化无人驾驶环境的点云信息处理。通过RANSAC迭代求最优直线拟合以去除地面点云,提升三维车辆检测精度。同时展示了代码实现和实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

前言

一、算法原理

参考文献 

二、代码实现

1.头文件

2.源文件

3.测试文件

三、结果展示

1. 地面去除结果

2. 聚类 


前言

        激光雷达采集无人驾驶系统驾驶环境时,由于地面点云形状固定,增加点云信息计算量;同 时存在地面纹理杂乱并含有部分离群点,大幅度降低三维车辆检测的精度。


一、算法原理

        RANSAC 算法是剔除地面点云最简单的方法之一 , RANSAC 算法首先通过随机采样从测试点集中选取一个子集进行参数估计。运用所有测试数据集对该估计模型进行检验,根据测试样本集中 数据对模型的支持度,确定地面估计的正确性。 通过不断建立假设与检验的迭代,以期获取一个 具有全局最优的地面模型参数,即获得最优直线 拟合,具体实现步骤如表 2所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云兔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值