估计自车轨迹曲率的方法

本文介绍了在自动驾驶系统中,如何利用传感器数据(如Yawrate和SteerAngle)估计车辆轨迹的曲率。通过两种不同的方法进行曲率估算,并根据车辆速度在不同阶段采用不同权重融合信息,确保在高速和低速情况下都能获得准确的轨迹估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Introduction

在分析ADAS横向控制代码时,PID控制的输入端是当前车的轨迹和规划给的目标轨迹的横向误差,所以需要通过自车的 传感器Yawrate和SteerAngle,去计算,去估计自车轨迹的曲率,看源代码,然后通过方程近似求解出自车目前的横向距离。估计自车的轨迹的曲率一般有两种方式。

2.Algorithm

在这里插入图片描述

在这里插入图片描述
我们注意到这两种方式的使适用场景不一样,所以实际工程中需要给二者在不同车速度段做一个比例查表,融合二者的信息,在高速的时候,方法一置信度高故给的比例大,低速度段的时候,方法二的置信度高,给它的比例就会大。

### Matlab 中绘制辆跟踪轨迹图的方法 在Matlab中绘制辆跟踪轨迹图可以通过记录并可视化辆的位置变化来完成。这通常涉及到获取位置数据,这些数据可能来自GPS传感器或其他定位设备,并将其绘制成二维或三维图形。 对于基于IMU(惯性测量单元)的数据处理和轨迹跟踪,可以采用状态估计轨迹积分的方式[^1]: ```matlab function plotVehicleTrajectory(IMUData) % 假设IMUData是一个结构体数组,其中包含时间戳、加速度计读数(ax, ay, az)以及陀螺仪读数(gx, gy, gz) % 初始化变量用于存储位移 positionX = zeros(size(IMUData.time)); positionY = zeros(size(IMLData.time)); % 初始条件设定 initialPosition = [0; 0]; % 设定起始坐标为原点 % 对每一时刻计算新的位置 for i = 2:length(IMUData.time) deltaTime = IMUData.time(i) - IMUData.time(i-1); % 使用简单的欧拉法近似求解微分方程得到速度增量dv dv_x = (IMUData.ax(i)+IMUData.ax(i-1))/2 * deltaTime; dv_y = (IMUData.ay(i)+IMUData.ay(i-1))/2 * deltaTime; % 更新位置向量p positionX(i) = positionX(i-1) + dv_x; positionY(i) = positionY(i-1) + dv_y; end figure(); plot(positionX,positionY,'r','LineWidth',2); % 绘制红色线条表示路径 xlabel('东方向距离(m)'); ylabel('北方向距离(m)'); title('辆行驶轨迹'); end ``` 上述代码片段展示了一个简化版的例子,实际应用中的情况可能会更加复杂,比如考虑地球曲率影响下的地理坐标转换等问题。此外,在真实场景下还需要考虑到IMU本身的误差累积效应,因此往往还会结合其他类型的传感器来进行校正。 为了更精确地模拟卫星或者其他天体返回地面的过程,则可参照给定的空间参数定义物体运行轨道上的各个点,并最终形成一条连续曲线[^2]: ```matlab a = 7e6; b = 5e6; T0 = 2*pi; T = 5*T0; dt = pi/100; t = [0:dt:T]'; f = sqrt(a^2-b^2); th = deg2rad(12.5); E = exp(-t/(T/4)); x = E .* (a.*cos(t)-f); y = E .* (b.*cos(th).*sin(t)); z = E .* (b.*sin(th).*sin(t)); plot3(x,y,z,'g'); hold on; sphere(20); alpha(.5); lighting gouraud; axis off; view([90,-90]); title('假设的飞行器下降轨迹'); comet3(x,y,z,.02); hold off; ``` 此部分代码主要用于说明如何创建一个具有特定几何特性的空间轨迹模型,而不是直接适用于辆追踪的应用程序开发之中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jack Ju

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值