Pytorch torch.split()的简单用法

官方文档:https://pytorch.org/docs/1.10.1/generated/torch.split.html#torch.split

torch.split()的作用是把一个tensor拆分为多个tensor,相当于是concat的逆过程,定义如下:

torch.split(tensor, split_size_or_sections, dim=0)
  • tensor:待被拆分的tensor
  • split_size_or_sections:记该参数的值为k。如果k为整数(int),那么切分得到的每个子tensor在被拆分维度上的长度均为k(不要求严格整除,如果不能整除,最后一个子tensor会小一点);如果k为列表(list),那么第i个子tensor在被拆分维度上的长度为list[i]。
  • dim:沿着哪一维度开始拆分

这里举一个简单的例子。比如在计算机视觉任务中,需要处理一个batch size为4,通道数为128,长宽均为512的feature map,按照[B, C, H, W]的格式,创建如下:

import torch
t = torch.rand([4, 128, 512, 512])

如果我们要按通道将其等分为两半,写法如下:

import torch
t = torch.rand([4, 128, 512, 512])
print(t.shape)
a, b = torch.split(t, 64, dim=1)
print(a.shape)
print(b.shape)

输出结果如下:

torch.Size([4, 128, 512, 512])
torch.Size([4, 64, 512, 512])
torch.Size([4, 64, 512, 512])

这里由于是等分,因此可以直接用int指定。而如果是更灵活的切分,则应该用列表,比如我们希望第1个子tensor通道数为3,而第二个子tensor通道数为125,则可以改成:

a, b = torch.split(t, [3, 125], dim=1)

此时输出结果如下:

torch.Size([4, 128, 512, 512])
torch.Size([4, 3, 512, 512])
torch.Size([4, 125, 512, 512])

需要注意的是,如果传入list进去拆分的话,那么每个子tensor的维度加起来应该是要等于原来的维度的。在这个例子中,有3+125=128。如果我们改成3和124:

a, b = torch.split(t, [3, 124], dim=1)

这种情况下是会报错的。

### PyTorch `split` 和 `chunk` 函数的区别 #### 功能描述 PyTorch 的 `split` 和 `chunk` 都用于分割张量,但两者的工作方式有所不同。 对于 `torch.split(tensor, split_size_or_sections, dim=0)` 函数而言,此方法允许指定要切割成的小片段大小或是各个部分的具体尺寸列表。如果提供的是单个整数,则表示每一部分的长度;如果是元组或列表,则精确指定了各分片的大小[^1]。 ```python import torch tensor_example = torch.arange(8) # 使用 split 方法按每份两个元素来划分张量 result_split = torch.split(tensor_example, 2) print([t.tolist() for t in result_split]) ``` 另一方面,`torch.chunk(tensor, chunks, dim=0)` 则更倾向于平均分配输入张量到指定数量的部分中去。当无法均匀切分时,最后一块可能会小于其他部分。这里只接受一个参数来定义希望得到多少个子集。 ```python # 使用 chunk 方法将张量分为三等分 result_chunk = torch.chunk(tensor_example, 3) print([t.tolist() for t in result_chunk]) ``` 这两种操作都支持通过设置维度参数 (`dim`) 来控制沿哪个轴执行拆分,默认情况下是在第零维上工作。 #### 输出差异展示 上述代码会分别打印出由 `split` 和 `chunk` 返回的结果: - 对于 `split`: 如果传入了合适的总和等于原始张量长度的分割尺寸数组,那么将会获得完全按照给定规格被分开的新张量集合; - 而对于 `chunk`: 不管怎样都会尝试尽可能公平地把原数据分成所请求的数量级,即使这意味着某些部分可能比其他的稍大一些或小一点。 因此,在实际编程过程中可以根据具体需求选择合适的方法来进行张量的操作处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值