YOLOv12强势来袭!打破CNN主导,实现速度精度新高度,实时目标检测的效率之王!

目录

一、YOLOv12论文信息

二、YOLOv12性能突破

三、YOLOv12:技术创新和突破

区域注意力模块

残差高效层聚合网络(R-ELAN)

架构优化

四、Coovally AI模型训练与应用平台 

五、YOLOv12实验比较

在COCO上的详细性能

与其他实时监测器的性能比较

消融实验

速度比较

诊断与可视化

六、YOLOv12局限性

总结


大家好,今天要给大家介绍的是最新发布的目标检测模型——YOLOv12。相信关注计算机视觉和深度学习的小伙伴们都已经听说过YOLO系列,作为目标检测领域的“老牌明星”,YOLO每次更新都会带来不少惊喜。那么,新鲜出炉的YOLOv12,它到底有哪些亮点呢?今天,就让我们一起来深入了解一下!


一、YOLOv12论文信息

图片1.png

论文题目:YOLOv12: Attention-Centric Real-Time Object Detectors

论文链接:https://arxiv.org/abs/2502.12524

代码链接:https://github.com/sunsmarterjie/yolov12


二、YOLOv12性能突破

YOLOv12共包含了5种规模:YOLOv12-N、S、M、L和X

YOLOv12在准确率和速度上超越了所有流行的实时物体检测器。例如,YOLOv12-N在T4 GPU上的推理延迟为1.64ms,达到40.6%的mAP,比先进的YOLOv10-N/YOLOv11-N高出2.1%/1.2%的mAP,而速度相当。这一优势在其他规模的模型中同样保持一致。YOLOv12还超越了改进DETR的端到端实时检测器,如RT-DETR/RT-DETRv2:YOLOv12-S比RT-DETR-R18/RT-DETRv2-R18快42%,仅使用36%的计算和45%的参数。


三、YOLOv12:技术创新和突破

YOLOv12是YOLO系列的最新版本,它继承了YOLO系列的高效和快速,并在此基础上做出了很多技术创新和优化。

  • 区域注意力模块

为了克服传统自注意力机制计算复杂度高的问题,YOLOv12通过创新的区域注意力模块(Area Attention,A2),分辨率为(H, W)的特征图被划分为l个大小为(H/l, W)或(H, W/l)的段。这消除了显式的窗口划分,仅需要简单的重塑操作,从而实现更快的速度。将l的默认值设置为4,将感受野减小到原来的1/4,但仍保持较大的感受野。采用这种方法,注意力机制的计算成本从2n²hd降低到1/2n²hd。尽管存在n²的复杂度,但当n固定为640时(如果输入分辨率增加,则n会增加),这仍然足够高效,可以满足YOLO系统的实时要求。A2降低了注意力机制的计算成本,同时保持较大的感受野,显著提升了检测精度。

3.png

  • 残差高效层聚合网络(R-ELAN)

针对传统ELAN(高效层聚合网络)在优化过程中的不稳定性问题,YOLOv12引入了R-ELAN,在整个块中从输入到输出引入了一个具有缩放因子(默认为0.01)的残差捷径。通过新的聚合方法,使用一个过渡层来调整通道维度,并生成一个单一的特征图。然后,该特征图通过后续块进行处理,接着进行连接,形成一个瓶颈结构。使得网络在处理大规模模型时能够更加稳定和高效,还降低了计算成本和参数/内存使用量。

4.png

  • 架构优化

引入FlashAttention来解决注意力的内存访问问题,减少了内存读写延迟,提高了计算效率。调整MLP比率,进一步提升了速度和精度,去除了位置编码,并引入了大卷积核(7×7卷积),有效增强了网络对位置的感知能力,同时保持了计算效率。

综上所述,YOLOv12的贡献有两方面:

  • 建立了一个以注意力机制为中心,简洁高效的YOLO框架,通过方法创新和架构改进,打破了YOLO系列中CNN模型的主导地位。

  • YOLOv12无需依赖预训练等额外技术,就能以更快的推理速度和更高的检测准确率取得最佳效果,展现出其巨大的潜力。


四、Coovally AI模型训练与应用平台 

你想第一时间使用YOLOv12模型吗?Coovally平台满足你的要求!

Coovally平台整合了国内外开源社区1000+模型算法各类公开识别数据集,无论是最新的YOLOv12模型还是Transformer系列视觉模型算法,平台全部包含,均可一键下载助力实验研究与产业应用。

图片
平台已部署YOLOv12模型算法

在Coovally平台上,无需配置环境、修改配置文件等繁琐操作,一键另存为我的模型,上传数据集,即可使用YOLO、Faster RCNN等热门模型进行训练与结果预测,全程高速零代码而且模型还可分享与下载,满足你的实验研究与产业应用。

图片


五、YOLOv12实验比较

  • 在COCO上的详细性能

11.png

  • 与其他实时监测器的性能比较

5.png

YOLOv12-N:在推理延迟为1.64毫秒时,mAP达到了40.6%,较YOLOv11提高了1.2%,推理速度也更快。

YOLOv12-S:相较于RT-DETR-R18/RT-DETRv2-R18,YOLOv12-S实现了38.6%的推理速度提升,且mAP较其高出1.5%/1.1%。与此同时,YOLOv12-S仅使用了36%的计算量和45%的参数数量。

YOLOv12-X:对于大型模型,YOLOv12-X在更复杂的任务中依然展现出优异的性能,并能高效处理大规模数据。

  • 消融实验

区域注意力模块:进行了消融实验来验证区域注意的有效性,评估是在 YOLOv12-N/S/X模型上进行的,测量了GPU(CUDA)和CPU上的推理速度。在RTX 3080上使用FP32,YOLOv12-N实现了减少0.7ms推理时间。这种性能提升在不同的模型和硬件配置中都得到了一致的体现。

12.png

R-ELAN:使用YOLOv12-N/L/X模型评估了所提出的残差高效层网络(R-ELAN)的有效性。对于像YOLOv12-N这样的小模型,残差连接不会影响收敛,但会降低性能。相反,对于较大的模型(YOLOv12-L/X),它们对于稳定的训练至关重要。特别是,YOLOv12-X需要最小缩放因子(0.01)以确保收敛。特征集成方法有效地降低了模型在FLOP和参数方面的复杂性,同时保持了可比的性能,仅有轻微的下降。

6.png

  • 速度比较

对不同GPU的推理速度进行了比较分析,评估了YOLOv9、YOLOv10、YOLOv11以及在RTX 3080、RTX A5000和RTX A6000上以FP32和FP16精度进行的YOLOv12。在RTX 3080上,YOLOv9报告2.4毫秒(FP32)和1.5毫秒(FP16),而YOLOv12-N实现了1.7毫秒(FP32)和1.1ms(FP16)。其他配置也存在类似的趋势。

7.png

9.png

  • 诊断与可视化

YOLOv12通过优化注意力机制、分层设计、训练周期、位置感知和区域关注等多方面创新,提升了工件检测的性能和计算效率。

8.png

可视化分析热图分析显示,YOLOv12相比YOLOv10和YOLOv11在物体作用和前景激活上更清晰,表明区域注意在感知能力上的提升,使YOLOv12在性能上具备优势。

10.png


六、YOLOv12局限性

  • YOLOv12 目前的局限性在于它依赖FlashAttention来实现最佳速度。FlashAttention 仅支持相对较新的 GPU 架构(NVIDIA Turing、Ampere、Ada Lovelace 或 Hopper 系列),例如 Tesla T4、RTX 20/30/40 系列、A100、H100 等。

  • 这意味着缺乏这些架构的旧 GPU 无法充分受益于 YOLOv12 优化的注意力实现。使用不受支持的硬件的用户将不得不回退到标准注意力内核,从而失去一些速度优势。

  • 目前,作者尚未尝试将 YOLOv12 用于其他任务,例如姿势估计和实例分割。不过,作者可能会在未来提供相关结果。


总结

YOLOv12通过创新的区域注意力模块、残差层高效网络和架构优化,在精度、推理速度和计算效率上实现了突破,并挑战了基于CNN的设计在YOLO系统中的主导地位,并推动了注意力机制在实时物体检测中的集成,为未来的实时检测系统开辟了新的方向。

### YOLOv1 和 YOLOv2 的不同之处 #### 特征差异 YOLOv2引入了许多改进来提升性能和准确性。相比YOLOv1,YOLOv2采用了Darknet-19作为基础架构,该结构由19个卷积层和5个最大池化层组成[^4]。而YOLOv1则基于一个较浅的网络结构,具有24个卷积层。 YOLOv2还实现了Batch Normalization技术于每一层之上,这不仅有助于加速收敛过程,而且可以移除dropout的需求,从而提高分类精度并减少过拟合现象的发生概率[^4]。 #### 性能对比 在速度方面,尽管两者都提供了实时处理能力,但是通过优化后的YOLOv2能够在保持甚至超越原有检测速率的同时显著提高了识别效果。具体来说,在PASCAL VOC数据集上的mAP(mean Average Precision)指标上,YOLOv2达到了78.6%,远高于YOLOv1的表现;而在COCO数据集上更是取得了令人瞩目的进步——从原来的21.6%增长到了28.2%[^4]。 此外,为了进一步增强小物体检测的能力以及解决边界框预测中的尺度变化问题,YOLOv2借鉴了Faster R-CNN的做法,利用k-means聚类算法预先计算出一组合适的先验框尺寸,并将其应用于特征图中各个位置处的目标定位任务当中去[^4]。 ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn, yolo_v2_pascal_voc model_yolov1 = ... # 加载YOLOv1模型 model_yolov2 = yolo_v2_pascal_voc(pretrained=True) images = [...] # 输入图像列表 outputs_v1 = model_yolov1(images) outputs_v2 = model_yolov2(images) for output_v1, output_v2 in zip(outputs_v1, outputs_v2): print(f"YOLOv1 Predictions: {output_v1}") print(f"YOLOv2 Predictions: {output_v2}\n") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值