[CVPR-21] Robust and Accurate Object Detection via Adversarial Learning

 代码:https://github.com/google/automl/tree/master/efficientdet/Det-AdvProp.md

目录

摘要

引言

方法

AdvProp

Det-AdvProp

实验

质量实验

 消融实验


摘要

  1. 目标检测的数据增强还未被充分探索;
  2. 目标检测模型通常基于fine-tuning pre-trained classifier,本文首先探索了数据增强对分类器的改善能否传递给检测模型,结果是不行;
  3. 本文进一步探索了对object detectors的fine-tuning,从分类和定位分支选择对抗样本,用于提高模型准确率和鲁棒性。

引言

  • 无法通过增强分类模型鲁棒性,进而改善检测模型鲁棒性,因此转而探究fine-tuning。本文对AutoAugment的研究发现,它学习到的策略无法应用到本文模型(EfficientDet)上,怀疑AutoAugment只适用于某个检测和数据集,缺乏泛化性。
  • 检测器benefit from shape cues,对抗样本可以帮助CNN学习shape-related representations。
  • 对目标检测,可以用classification head和localization head来生成对抗样本。在训练阶段,通过比较两者,选择一个more adversarial来生成样本。这个选择很重要,因为直接聚合两者,由于对抗梯度混淆,会导致生成弱对抗样本。
  • 最好在fine-tuning阶段使用数据增强。

方法

AdvProp

前人工作中,对抗训练虽然提高了对对抗样本的鲁棒性,但是损失了干净样本上的准确率。AdvProp认为干净样本和对抗样本来自不同分布,因此需要解耦为两个不同的分布。具体来说,AdvProp为对抗样本引入辅助BN。在每个epoch中,从辅助BN分支生成对抗样本,然后和干净样本一起前向,最后正常反传梯度训练。

Det-AdvProp

目标检测和分类任务不同在于:目标检测包含分类和回归损失,两者通过权重系数来权衡。

 前人工作指出仅攻击其中一项,就可以攻击检测器成功。然后,本文进行了多种尝试:

(1)AdvProp over L_{det}(DET)。通过L_{det}产生对抗样本,对抗样本和干净样本引入两个BN。但是它的表现不如仅攻击L_{cls}(CLS)。[38]指出,对L_{det}的攻击生成的分类和回归梯度,有不同的值域和矛盾的方向,这会减弱对抗样本的效果。

(1)AdvProp over L_{cls} and L_{det}(3BN)。将分别从分类和回归损失生成的样本视作不同域。因而引入总共三个BN,分别对应干净样本、来自分类和回归损失的对抗样本。这种方法对鲁棒性改善很多,但是在干净样本上会掉点。

(3)Det-AdvProp。分别从 L_{cls}L_{det}生成对抗样本,根据max-max rule选择损失最大的对抗样本加入训练。仅引入一个辅助BN,对应干净样本和对抗样本。具体算法如下:

 用FGSM对应的non-targeted attack产生对抗样本,具体算法如下:

 整体损失:

 

实验

质量实验

本文使用EfficientDet在三个任务:(1)clean accuracy: COCO 2017 (300 epochs);(2)Robustness: COCO-C(15种腐蚀和5种强度);(3)Domain shift: PASCAL VOC-2012。主要是和AutoAugment做比较。

 消融实验

Det-AdvProp with targeted and non-targeted attacks

 Det-AdvProp with different attack strengths

 RetinaNet:对RetinaNet也有效

 

 

 

 

 

 

 

 

 

 

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值