什么是基于人类反馈的强化学习(RLHF)

RLHF(Reinforcement Learning with Human Feedback) 是大语言模型(如 GPT-4、Claude、ChatGPT)训练中的一项核心技术,用于让模型的输出更符合人类偏好、更有帮助、更安全

全称是 基于人类反馈的强化学习,是一种用人类评价来优化生成式模型行为的方法。


一、RLHF 是什么?一句话总结:

RLHF 是通过人类反馈信息,训练一个奖励模型,再用强化学习方法引导大模型的输出朝“人类更喜欢”的方向演化。

它是 GPT-3.5、GPT-4、ChatGPT、Claude 等对话模型能力进化的关键步骤。


二、RLHF 的训练流程(标准三阶段)

RLHF 的训练流程分为 三个阶段,以 OpenAI 的 GPT 模型为例:

阶段 1:监督微调(Supervised Fine-tuning,SFT)

  • 使用人工标注的数据对预训练模型进行微调;
  • 人类编写 prompt 和参考回答,教会模型基础对话能力;
  • 输出:一个基础对齐模型(SFT 模型)。

阶段 2:奖励模型训练(Reward Model)

  • 人类给出多个模型回答,对它们排序(如哪一个更好、更有帮助);
  • 用这些排序数据训练一个奖励模型(Reward Model,RM);
  • 奖励模型可以对任意回答打分,反映人类偏好。

例如:人类评价说 A 比 B 更好,训练 RM 使 ( R(A) > R(B) )。

阶段 3:强化学习微调(PPO)

  • 用强化学习(如 PPO 算法)让模型在生成回答时最大化奖励模型的打分
  • 模型逐步优化输出,使其更符合人类喜好;
  • 输出:对齐后的大语言模型。

三、RLHF 的关键技术点

技术要素说明
Reward Model(RM)通过人类排序数据训练出来的偏好打分器
PPO(Proximal Policy Optimization)一种稳定高效的强化学习算法,用于训练生成模型
KL-Penalty在优化过程中防止生成结果偏离原始模型太远
对齐(Alignment)模型行为更安全、有益、可靠,符合人类价值观

四、RLHF 的目标:提升模型“对齐能力”

预训练语言模型只学到了语法、逻辑、知识,但:

  • 不一定“对人类友好”
  • 不一定“有帮助”
  • 不一定“可信、安全”

RLHF 通过人类反馈,将“人类价值观”和“语用需求”融入模型,让它不仅能“说得对”,还要“说得好”。


五、RLHF 在大模型中的作用

阶段模型是否使用 RLHF
GPT-3无对齐,输出易失控
GPT-3.5使用 RLHF 构建 ChatGPT
GPT-4更高质量的 RLHF 数据
Claude 系列强化人类协作价值观
文心一言、ChatGLM等国产大模型部分使用 RLHF 替代品(规则打分、偏好排序)部分 ✅

六、RLHF 与 SFT 的区别

对比项监督微调(SFT)RLHF
数据来源人类提供标准答案人类对多个模型回答排序
优化方式直接拟合答案间接最大化奖励值
优势快速建立模型基本能力强化模型生成行为的“好坏”
结果基础模型更对齐、更自然的对话模型

七、RLHF 面临的挑战

  • 人类打分数据稀缺:打标签成本高,耗时耗力;
  • 奖励模型偏差:容易放大错误偏好;
  • 强化学习不稳定:容易“灾难性遗忘”或生成奇怪样本;
  • 价值观对齐困难:不同文化、不同用户偏好不同。

八、RLHF 的替代与补充方法

  • DPO(Direct Preference Optimization):直接优化人类偏好排序,不用强化学习;
  • RLAIF(RL with AI Feedback):用另一个语言模型模仿人类打分,降低人工成本;
  • CoT + Prompt Tuning:直接用提示和链式推理引导模型行为;
  • Reward Shaping:结合规则/知识引导模型方向。

九、总结回顾

RLHF 是让模型“更听话、更友好”的核心技术

  • 先用监督微调建立基础能力;
  • 然后用人类打分训练奖励模型;
  • 最后用强化学习让模型输出更符合人类期望;
  • 帮助实现更高质量、更安全、更可信的大语言模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值