基于激光雷达的自主定位导航微小型多旋翼无人机设计(源码+万字报告+讲解)

摘要 1
Abstract 1
1绪论 4
1.1研究背景 4
1.2国内外研究现状 4
1.2.1国外研究现状 5
1.2.2国内研究现状 6
1.3研究内容 7
2设计方案分析 8
2.1SLAM原理 8
2.1.1 数据预处理 8
2.1.2 特征点提取 9
2.2飞行模式分析 9
2.3导航设计 10
2.4系统架构概述 11
3硬件设计 12
3.1四旋翼无人机 13
3.2机载计算机 14
3.3激光雷达 15
3.4飞控系统 16
4软件设计 17
4.1通信模块 18
4.2定位模块 19
4.3无线通讯控制 20
5总结 21
参考文献 21

1绪论
1.1研究背景
近几年,旋翼无人机因其操作便捷、体积紧凑、稳定性出色和成本相对较低的特点,在多个行业中得到了广泛应用,包括但不限于高压巡线、山体滑坡、地理测绘B1以及航拍摄影等。旋翼无人机作为一种新型无人飞行器具有广阔的发展前景和市场价值。旋翼无人机配备了多种传感器,这使得它具备了独立飞行的能力,并能在特定的环境中实现其预定的功能。由于旋翼无人机体积相对较大,导致传统的惯性导航系统很难对旋翼无人机进行准确定位和姿态测量。旋翼无人机配备了MEMS惯性传感器,这使得它能在较短的时间内为无人机提供所需的导航位置信息。然而,随着时间的推移,惯性传感器产生的误差会逐渐累积,并在较长的时间后逐渐发散,导致旋翼无人机无法顺利完成其导航任务。另外由于惯性传感器自身存在一定误差,如果不对其进行校正将会影响到整个系统的定位准确度和实时性。因此,目前将惯性传感器与其他高精度传感器进行整合是一种非常受欢迎的方法,整合后的导航系统能够获得更高精度、更稳定、更可靠的导航信息。
尽管激光雷达导航技术已经得到了广泛的应用,但旋翼无人机在空中飞行时,由于与地面车辆相比增加了飞行高度和平面俯仰等因素,也带来了一系列新的挑战和问题。为了提高旋翼无人机的安全性,就要对其进行一定程度的改进与优化,以适应各种复杂情况下的工作要求。在空中操作时存在一定的风险,旋翼无人机的承载能力相对较弱,因此当与旋翼无人机结合使用时,就需要考虑更多的性能和安全性因素。所以,对旋翼无人机进行导航系统的研究是必要且重要的。旋翼无人机的使用范围日益扩大,其在各个行业中都蕴藏着巨大的发展空间。本文针对目前市场中常见的几种直升机进行分析比较,提出一种基于激光视觉系统的旋翼无人机自主导航系统。旋翼无人机具备自主导航功能,这使得操作人员不再受到限制,从而节省了大量的人力资源,并提升了工作效率。
1.2国内外研究现状
基于视觉技术的旋翼无人机定位主要可以分为两大类:一是机载视觉传感器的定位,二是外部视觉传感器的定位。其中机载视觉传感器定位具有实时性好、定位精度高等优点而得到广泛关注。利用机载视觉传感器进行旋翼无人机的位姿估计已经成为当前学术研究的焦点,而相对较低的摄像头成本为其未来的商业潜力提供了巨大的价值。外部视觉传感器的定位方法是先在旋翼无人机上放置特定的识别物,然后在现场安装用于检测这些识别物的摄像头,以估算旋翼无人机在空间和速度上的变化。这种方法仅适用于某些特定场景,而在复杂的工作环境中则不适用。
1.2.1国外研究现状
如果周边环境的光照条件保持不变,人员活动不受干扰,以及周围物体保持静止,那么现有的SLAM系统无疑具有很高的实用价值。然而,在应用视觉SLAM技术进行定位时,仍然需要解决一系列相关问题。由于旋翼无人机自身结构特点导致其无法直接安装视觉传感器进行定位,因此必须要使用一种方法来获得旋翼无人机的位置信息。在2010年,Blosch、Weiss等研究者在旋翼无人机上增加了一个单目摄像头,并采用PTAM算法来估算旋翼无人机的位置和姿态,从而实现了旋翼无人机在仅依赖视觉传感器的情况下的精确定位。随后,有很多关于利用相机拍摄图像并计算出摄像机参数来对无人机位置进行标定的相关文献发表。这项研究是首次采用单目摄像头搭载惯性测量单元来完成旋翼无人机室内定位的,但其局限性在于使用USB线将旋翼无人机端的图像传送至地面站,从而完成SLAM算法的执行。由于无线传输速度较快,因此这种方法不适合长时间工作,而且不能保证定位精度。美国加州大学的研究人员利用视觉同步定位和图像构建技术,成功地对旋翼无人机进行了视觉位姿的估计,并据此进行了导航定位。这些之前完成的独立定位研究并没有搭载机载处理器,因此需要在地面站上执行算法,导致系统的实时响应能力较弱。本文提出一种新的基于单目视觉的低成本旋翼无人机定位系统方案。宾夕法尼亚大学的科研团队在2013年成功地利用单目相机、双目相机和惯性测量单元构建了一个独立的飞行系统。在这个飞行系统上,他们安装了机载处理器以进行实时的位姿估计,而不是将无人机的图像传送到地面站进行计算,这样更便于获取实时位置信息。
近几年,越来越多的科研人员开始尝试使用光学或非光学视觉、红外技术、超声波、激光等多种传感器来进行环境感知,以便更准确地进行定位和导航。由于这些设备都具有体积大、功耗高等缺点,因此无法满足小型无人飞行器长时间连续作业和实时监测的需求,并且需要大量的人力成本以及较高的系统复杂性。SLAM(Simultaneous Localization AndMapping 即时定位与地图构建)的诞生,为多旋翼无人机在多变环境中进行精准定位和导航提供了有效的解决策略。
SLAM的概念最早可以追溯到1986年在美国旧金山召开的EEE Robotics andAutomationConference会议。这是一个技术,它允许移动平台在不熟悉的环境中,从其初始位置开始,根据传感器提供的测量数据来创建增量地图,并利用这些地图来确定移动平台的确切位置。由于其自身的特点,该技术已经广泛应用于移动机器人以及无人机领域中。基于不同的载体传感器,SLAM技术可以被分类为视觉驱动的SLAM技术和激光雷达驱动的SLAM技术。使用激光雷达来进行SLAM具有多种优势,如高度的测量准确性、快速的数据传输和对光线的不敏感性,这确保了导航的即时性和精确度,并且在机器人和无人驾驶车辆的研究领域也已相当成熟。由于激光自身存在着一些缺点,因此在很多场合都被放弃使用。如今,越来越多的研究者开始在无人机领域应用这一技术,并对其进行了深入的研究。
1.2.2国内研究现状
尽管目前我国在激光雷达导航领域的研究起步相对较晚,但得益于无人驾驶技术的快速发展,学术界和工业界都取得了显著的进步。由于激光雷达具有全天候工作、全天时作业等特点,在军事上有着广泛的应用前景,因此对其定位精度也有很高要求。华南理工大学的研究团队通过利用几何特征地图进行定位估计,成功地提高了重要性密度函数,并进一步提出了一种改良版的粒子滤波SLAM算法。北京邮电大学在自主研发的机载激光系统基础上开展了三维激光雷达技术的研究。浙江工业大学利用多种传感器技术成功地实现了无人机的精确定位和避障功能。北京航天测控技术研究所利用机载激光测量系统开展了高精度三维姿态测量。南京航空航天大学采用了二维激光雷达技术来构建旋翼无人机的平台,并通过特征匹配与点云匹配技术来估算位置和姿态,同时将这些估算结果与惯性传感器进行了整合。北京科技大学开发了基于激光扫描数据的道路检测系统,可以快速、准确地获得路面信息。上海交通大学通过在旋翼无人机上安装二维激光雷达,成功地在桥梁环境中实现了自主导航功能。
激光雷达因其卓越的测距能力,在机器人平台上被广大用户用于自动定位任务。目前国内外研究人员正在利用激光雷达对无人直升机平台开展一系列探索实验,其中包括基于激光雷达技术的无人驾驶飞行器飞行控制及环境感知能力研究。在2012年,德国航空宇航局成功构建了一个旋翼无人机平台,专为救援活动而设计。这款无人机集成了激光雷达和视觉摄像头等传感器技术,能够通过多传感器的融合来准确估计无人机的位姿,从而实现自主定位功能。本文以美国国家地理网站提供的数据为例,介绍激光雷达与视觉摄像头组合导航系统,分析激光雷达对环境特征点提取以及相机标定方法。2013年,英国华威大学采用激光雷达作为主要的传感器,构建了旋翼无人机的导航系统,并采用ICP算法来估算其位置和姿态。此外还采用了多种其他方法以提高定位精度。综合考虑,我们可以观察到,在没有GPS的环境中,采用激光雷达作为主要的传感器更能满足大部分场景的导航和定位需求,这也吸引了众多国内外研究者的关注和研究。激光雷达技术具有高精度,低成本,低功耗以及高稳定性的优势,是一种很有潜力的新技术应用方向。目前,激光雷达技术在自动驾驶和旋翼无人机领域都取得了相当不错的表现,预示着未来的发展趋势非常乐观。
1.3研究内容
我们计划使用以STM32H7为中心的无人机飞控技术来构建微型四旋翼无人机,而这款无人机的飞控软件是基于PX4飞控软件栈的。该方案包括总体设计,硬件电路设计及软件设计。我们设计了一个多旋翼无人机的机架、动力系统和遥控系统。通过QGC来调整飞控PID参数,确保无人机在姿态模式下能够稳定飞行并避免障碍。微小型固态激光雷达基于SLAM算法来实现无人机的定位和导航,确保无人机在定点模式下能够稳定飞行。此外,NVIDIA JETSON NX被选为机载主控计算机,负责信息处理和无人机的控制工作。
机载主控计算机负责采集激光雷达点云数据,并运用SLAM算法进行精确的定位导航,该算法能够输出无人机的里程计信息和周围环境的点云数据;通过卡尔曼滤波器对误差信号进行滤波处理,得到最优估计的航迹数据和速度矢量。路径规划算法是基于里程计和点云数据来规划无人机的飞行路线;在此基础上,设计了一套完整的无人机系统。机载主控计算机负责收集无人机的遥测数据,这些数据涵盖了位置、姿态等多个方面;在此基础上结合无人机实际运行情况设计了一套完整的无人飞行器导航系统。主控计算机根据SLAM算法模块输出的目标里程计和路径规划算法输出的无人机航点,采用PX4飞控的OFFBOARD模式,使用PID算法控制无人机的飞行,从而实现无人机的自主避障飞行。
2设计方案分析
2.1SLAM原理
激光雷达作为一项主动的遥感技术,它以其高度的测量准确性和对环境变化的低敏感性而著称。激光扫描仪作为激光雷达的重要组成部分,对激光雷达系统性能有至关重要的影响。基于不同的扫描机构,激光雷达可以被分类为二维激光雷达和三维激光雷达两大类。随着二维激光雷达技术的进步,其在尺寸和能耗上都有所减少,因此越来越多的研究者开始在SLAM的实施中采用它。
SLAM的执行策略大致可以分为两大类:一是基于概率的策略,二是基于扫描匹配的策略。本文介绍了这两类方法的原理及算法流程。以概率为基础的方法主要涵盖了基于粒子滤波的SLAM以及基于扩展卡尔曼滤波的SLAM。基于扫描匹配技术,主要是计算载体移动前后的两组扫描数据,从而确定其位置和姿态的关系。
在无人机的SLAM实现中,使用二维激光雷达主要依赖于基于扫描匹配的技术,这主要涵盖了两个核心步骤:数据的初步处理、特征点的抽取。
2.1.1 数据预处理
在我们开始提取室内结构化环境的特征之前,为了避免激光雷达在数据采集过程中受到设备本身的噪声和外部环境的干扰,我们需要对二维激光雷达的数据进行预处理。这通常涉及三个关键步骤:中值滤波、远程测量值的标记以及区域的划分。中值滤波作为一种信号处理方法,能够有效地降低噪声。其核心思想是使用扫描序列中某一点的值来替代该点附近各点的中值,这样可以使其周围的像素值更接近真实值,进而有效地消除孤立的噪声点。本文提出了利用激光多普勒测距原理实现距离信息获取的方法。远距离测量点的标记功能主要是为了标识那些测量结果超出扫描范围的远距离测量点。通过对图像和激光回波信号进行处理可以获得被测目标距离上任意两点间的相对位移量。区域分割的方法是以跳变点作为界限,根据激光雷达扫描点的位置分布,将一个扫描数据分割成多个区域,每个区域内的扫描点都是连续分布的。由于激光探测目标时存在较大的散射影响,使得传统的图像分析方法无法准确地识别出这些被划分出来的子区域。激光雷达的扫描点可以被划分为多个区域点,以便更全面地展示信息。本文对几种常见的激光扫描仪中用于区域分割的算法作了简要介绍。我们经常采用的区域分割技术包括自适应阈值的方法和基于扫描点间的欧氏距离的方法。
2.1.2 特征点提取
在室内的结构化环境中,直线段是其显著特点,它可以通过一条或多条相互连接或独立的直线段来描述室内的二维平面形状。针对此问题提出了一种基于区域分割的室内环境中直线段特征提取与识别算法。基于区域划分,我们可以获取特征区域点集中的一条或多条代表环境信息的直线段特征。因此,利用点和线段之间的几何关系即可快速实现室内环境中直线段的识别与定位。在进行直线段的提取之前,首先需要对这些特征区域的点集进行再次分割,确保每一条直线段都与一个子点集相对应,接着利用拟合技术来确定每一条直线段的关键特征参数。本文提出了一种利用激光扫描仪获取室内环境中物体表面点云坐标并结合计算机图形学处理技术来实现三维模型上直线段自动定位和识别的新方法。目前,用于基于激光测距扫描数据的直线段分割提取的算法包括LT(Line-Tracking)算法、S&M(Split&Merge)算法、RANSAC(Random SampleConsensus)算法、EM(ExpectationMaximization)算法以及LR(Line-Regression)算法。
2.2飞行模式分析
四旋翼飞行器的外部结构呈现出轴对称的布局,这与直角坐标系有相似之处,其总体构造也相对简洁。每一个轴的尾部都装有一个小型的无刷电机,以及配套使用的正桨和反桨。在整个飞行过程中,四个螺旋桨围绕轴线转动并形成一定角度来实现悬停和前进等运动。由于航空器的结构具有对称性,当每一个电机驱动螺旋桨进行高速旋转时,都会产生一个垂直于机身平面的升力,同时还会产生一个对机身中心的扭矩。这就要求四个电机分别驱动同一轴线上同一种螺旋桨,以保证四个螺旋桨始终处于最佳状态下进行运动。为了确保四个扭矩能够保持平衡,四个电机的旋转方向必须满足以下条件:一个坐标轴上的两个螺旋桨类型是相同的,而另一个坐标轴上的螺旋桨类型是相反的,即正桨和反桨是交替排列的。这就要求四个电机必须按照一定顺序依次交替运行。在四旋翼飞行器执行飞行任务时,无人机可以根据其四个电机的各自工作模式被分类为“十”字和“X”字两种飞行模式。如图 2.1 所示。

图2.1 “十”字飞行模式与“X”字飞行模式
2.3导航设计
我们的目标是使四旋翼飞行器能够独立地进行识别和导航。在研究了国内外现有的一些识别方法后,提出一种基于视觉和激光雷达结合的方法来解决该问题。本研究中设计的飞行器的首要任务是首先确定地面上的目标物体;然后,通过导航系统完成了从起始点至目的地的飞行任务。基于以上目的,我们选择了一种较为常用的技术——机器视觉。机器视觉采用非接触技术来深入探索真实的世界。由于计算机计算能力和存储能力有限,所以采用传统的图像处理算法进行图像分析处理就显得比较困难。尽管机器视觉在实际应用中对其所处环境的要求相当高,并且需要大量的计算资源。然而,机器视觉具有与人眼相似的能力,可以实现对物体的识别,从而使飞行器的移动方向变得更为清晰。所以,将其应用于飞行器是一种很好的选择。双目视觉由于其高计算量和较差的实时性,不太适合应用在飞行器上。因此,本研究选择了单目视觉技术,并结合激光测距仪进行导航。在此基础上提出了基于激光测距技术和双目视觉技术相结合的导航系统设计方案。飞行器在导航时需要获取与其周边环境的位置数据,最直观的方法是利用激光测距仪来确定机身与障碍物之间的实际距离,并根据激光束的角度数据来确定障碍物的确切位置。在此过程中,如果激光信号被遮挡或丢失会导致测距失败或者定位不准等情况发生。因此,本研究融合了视觉和激光测距仪的各自优势,相互补充,共同实现了飞行器的独立导航功能。
四旋翼飞行器系统的设计方案可以被划分为三大部分:飞行控制器、机载计算机(地面站)以及无线远程控制。其中飞控系统负责整个控制系统的核心部分——姿态与高度角调节,而机载控制器接收来自地面的指令和反馈到飞机上的位置信息,从而实现对无人机各个状态的实时控制。飞行控制器(也称为飞控)一方面利用其内部的惯性传感器(如三自由度加速度计、陀螺仪等)来确保无人机的稳定飞行,而另一方面,它通过接收来自机载控制器或地面站的方向信息来指导无人机向特定方向移动;机载计算机则根据飞控系统提供的指令完成相应动作。机载控制器或地面站的主要职责是执行单目视觉和激光测距仪的导航程序,并将计算出的结果传递给飞行控制系统;另外还可以根据飞控系统的指令进行姿态调整和轨迹跟踪。无线远程遥控设备的配置主要是基于安全性的考量,通常无线遥控具有最高的权限级别,能够在无人机独立飞行时获得对飞行器的主导权。
在设计四旋翼飞行器的自主导航系统时,我们提出了一个方案,即在四旋翼飞行器上安装一个高性能且轻便的机载计算机。为了实现上述目的,提出了基于双目立体视觉的四足机器人飞行控制系统设计方案。我们采纳了嵌入式系统的设计理念,直接在机载计算机上完成视觉识别和激光雷达导航的计算,然后通过有线方式将这些信息传递给飞行控制系统。
本文制定的四旋翼飞行器系统总体方案如图2.2所示。

2.2飞行器总体方案
2.4系统架构概述
设计的框架主要是基于物理层、协议层和应用层来进行划分的。
在旋翼无人机导航系统中,物理层是一个关键的硬件组成部分,它主要由地面站和旋翼无人机在空中所需的设备组成。地面设备即为能与旋翼无人机进行信息交互并控制其飞行状态的系统或装置。地面站所需要的设备包括能够执行地面站控制系统的移动计算机以及用于地面和空中通信的数字传输设备。地面控制计算机与直升机上安装的飞行控制软件相连,从而实现对整个系统的监控。旋翼无人机在空中飞行所需的设备涵盖了激光雷达、数传电台、旋翼无人机、云台、传感器以及机载处理机。
协议层为地面站与无人机之间的通信制定了数据格式,旨在解读接收和发布相关的运动命令。
应用层指的是具体逻辑执行的层次,以及各个功能模块的具体实施。主要由地面控制系统和导航系统两大部分组成。地面站的部分功能包括发送导航命令、起飞和降落的指令,以及展示无人机当前发出的状态等相关信息。导航系统的主要功能是执行独立的飞行任务。定位系统的功能是实时呈现当前的位置和姿态信息。飞控与地控在地面控制着无人机进行一系列复杂而有序的操作,使无人机能够按照预先设定好的轨迹完成预定任务。飞控系统采用无人机的自主系统,并通过调用多种API接口来控制无人机执行特定的运动逻辑。

图2.3无人机导航系统设计架构

3硬件设计
在这篇文章中,我们选择了四旋翼无人机作为主要的研究对象,并构建了一个无人机平台,用于自主导航旋翼无人机。这种无人机在控制飞行速度和保持悬空稳定性方面具有明显优势,非常适合激光雷达导航项目。在选择相关配套设施时,我们需要考虑以下几个关键因素。第一是对飞行稳定性和悬停能力都有很高的需求。首先,该设备的构造必须适应实验操作环境,并拥有全面的控制、轻便的灵活性以及充沛的动力,以便为搭载激光雷达做好充分准备;接下来,导航系统需要获取旋翼无人机的当前状态以进行定位导航,传感器可以感知环境的变化,因此需要选择一个配备齐全的无人机平台;另外还应该考虑到系统稳定性与精度的问题,通过对误差因素的分析提出了相应的解决办法。其次,在旋翼无人机的飞行过程中,需要不断地获取雷达扫描周围环境的点云信息和传感器的变换信息,这就需要足够的计算能力来处理这些获取的信息,从而进行位姿估计,以实现自主飞行;再次,为了提高系统性能,还需要对整个控制系统进行设计。最终,我们必须考虑负载带来的能耗问题,以确保旋翼无人机能够最大限度地完成其飞行任务。
3.1四旋翼无人机
在对项目进行全面评估后,我们选择了君天研发的JT300四旋翼无人机。该无人机是由港大航空有限公司与清华大学联合推出的一款具有自主知识产权的新一代民用无人侦察机,其主要任务包括执行海上搜救、海洋环境监测及军事侦察等多种用途。该设备配备了高性能的旋翼系统和livox mid-360激光雷达,使得用户能够轻松地进行室内飞行控制。此外,它还配备了Nvidia Jeston XavierNX计算机,该计算机内置了ROS环境下的无人机控制程序,能够一键启动定点模式和实现避障功能。通过这些设备,可以对数据进行采集分析处理后得到更加精确的结果。除了这些,我们还在港科大部署了VINS_FUSION环境和数据链路的连接,这使得我们能够在JT300平台上开发二次SLAM算法。

图3.1无人机实体图
3.2机载计算机
在该项目中,我们选择了英伟达4G版-Orin NX-16G+256SSD作为无人机的搭载处理器。该设备采用高性能处理器,具有强大运算能力和丰富的外设资源,能够完成对雷达回波信号的采集、分析、滤波、增强等工作。配备了机载处理机的设备,能够接收并处理激光雷达扫描得到的点云数据,监听旋翼无人机传送的IMU数据,并向旋翼无人机发出各种飞行指令,从而为旋翼无人机的导航提供了可靠的支持。计算机为开发者提供了多种接口选项,如USB、HDMI、UART、RJ-45等,以便于他们更容易地进行调试和获取所需数据。此外还设计了一个通用的串口扩展端口和多个外接设备的接入端口,以满足不同用户对数据传输的需求。尤其值得注意的是,千兆以太网接口能够与激光雷达连接,并接收它生成的众多数据。通过对这些信息进行分析与整合后,即可应用到实际中去。这台计算机内置了Linux操作系统,为ROS、Eigen、Ceres等多种开发工具提供了稳定的运行环境,使得开发者在进行二次开发时更为便捷。该表格展示了性能的各项参数。

图3.2计算机性能参数

3.3激光雷达
Livox Mid-360被认为是一种工规级的激光雷达设备,它因其卓越的性能和在多个应用场景中的广泛使用而受到了行业内的高度关注。与其他类型的激光相比,它具有体积小、重量轻以及操作简单等优点。从性能参数的角度看,Mid-360激光雷达的视场角(FOV)已经达到360°(水平方向)×59°(垂直方向),这表明该雷达能够从多个角度全面地感知其周边环境。同时该产品还具有较好的测距能力,可测量到毫米量级精度,且对周围物体没有破坏作用,因此被广泛应用于工业检测、军事侦察以及医疗领域。激光的波长达到905nm,被归类为人类眼睛的安全级别Class 1(IEC60825-1:2014)。与传统雷达相比,该设备具有良好的环境适应性。当反射率达到10%时,探测的最远距离可以扩展到40m,而在反射率为80%的情况下,最远的探测距离能够达到70m。该系统能对近距离目标进行实时监测,并将这些信息发送到地面控制中心,从而提高城市应急救援能力。另外,该区域的近距离盲区仅为0.1m,因此测距和角度的随机误差都处于一个可容忍的区间内。因此,该激光雷达系统能够实现对人体近距离、无死角的检测与跟踪。Mid-360激光雷达还拥有若干独到的功能与属性。该系统采用了主动抗干扰的设计理念,即便在室内多激光雷达信号交织的环境下,也能保持稳定的运行状态,避免相互干扰。另外,该激光雷达还采用双脉冲技术进行探测,使系统能够长时间工作。此外,它还拥有对抗室外强烈光线的特性,不论是在室内昏暗环境还是在室外强光条件下,它的表现都能维持稳定。另外,该激光雷达

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值