第6章:磁路与变压器
6.1磁路的基本概念与定律
6.1.1磁场的基本物理量(磁感应强度、磁通、磁场强度等)
- 磁感应强度(B)
- 定义:磁感应强度是描述磁场强弱和方向的物理量。它是一个矢量,其大小等于单位正电荷以单位速度垂直于磁场方向运动时所受到的洛伦兹力。在国际单位制中,磁感应强度的单位是特斯拉(T)。例如,在一个均匀磁场中,放置一根通有电流的导线,导线所受的安培力大小就与磁感应强度有关,根据公式 F = B I L sin θ F = BIL\sin\theta F=BILsinθ( F F F是安培力, I I I是电流, L L L是导线长度, θ \theta θ是电流方向与磁场方向的夹角),可以看出磁感应强度越大,导线受到的安培力就越大。
- 物理意义:直观地反映了磁场在某一点的强弱和方向,就像电场中的电场强度一样,是描述磁场本身性质的重要物理量。
- 磁通(
Φ
\varPhi
Φ)
- 定义:磁通是通过某一面积的磁感应强度的通量,其计算公式为 Φ = B ⋅ S \varPhi = B\cdot S Φ=B⋅S(当磁场与面积垂直时, S S S是面积)。如果磁场不均匀,需要通过积分来计算磁通。单位是韦伯(Wb)。例如,在一个具有一定面积的线圈平面中,磁通表示通过这个平面的磁场总量。
- 物理意义:用于衡量通过某个给定面积的磁通量的大小,它是磁路分析中的一个重要参数,与电磁感应现象密切相关。
- 磁场强度(H)
- 定义:磁场强度是为了便于分析磁介质中的磁场而引入的物理量。在各向同性的线性磁介质中,磁场强度与磁感应强度的关系为 B = μ H B = \mu H B=μH,其中 μ \mu μ是磁导率。磁场强度的单位是安/米(A/m)。
- 物理意义:它主要用于描述在有磁介质存在时,磁场源(如电流)产生磁场的能力,不受磁介质性质的影响,使磁路分析在考虑不同磁介质时更加方便。
6.1.2磁路的欧姆定律
- 磁路欧姆定律类似于电路欧姆定律。在磁路中,磁通 Φ \varPhi Φ相当于电路中的电流,磁动势 F = N I F = NI F=NI( N N N是线圈匝数, I I I是电流)相当于电动势,磁阻 R m = l μ S R_m = \frac{l}{\mu S} Rm=μSl( l l l是磁路长度, μ \mu μ是磁导率, S S S是磁路横截面积)相当于电阻。磁路欧姆定律的表达式为 Φ = F R m \varPhi=\frac{F}{R_m} Φ=RmF。
- 例如,对于一个简单的环形铁芯磁路,当线圈匝数和电流一定时,磁动势 F F F确定。如果磁路的磁阻 R m R_m Rm发生变化(如铁芯材料的磁导率改变或者磁路长度、横截面积改变),磁通 Φ \varPhi Φ也会相应地改变。这就如同在电路中,当电动势不变,电阻变化时,电流会随之改变一样。
6.1.3磁路的基尔霍夫定律
- 磁路的基尔霍夫第一定律
- 定律内容:对于磁路中的任一闭合面,进入该闭合面的磁通等于离开该闭合面的磁通,即 ∑ Φ i n = ∑ Φ o u t \sum\varPhi_{in}=\sum\varPhi_{out} ∑Φin=∑Φout。这类似于电路中的基尔霍夫电流定律(KCL),它体现了磁通的连续性。
- 举例:在一个具有分支的磁路中,就像电路中的节点一样,总的磁通在分支处是守恒的。如果有一个主磁通进入分支点,那么它会按照一定的比例分配到各个分支磁路中,分配后的磁通总和等于进入分支点的主磁通。
- 磁路的基尔霍夫第二定律
- 定律内容:在磁路的任一闭合回路中,磁动势的代数和等于磁阻压降的代数和,即 ∑ F = ∑ H l \sum F = \sum Hl ∑F=∑Hl( H H H是磁场强度, l l l是磁路长度)。这类似于电路中的基尔霍夫电压定律(KVL),它是磁路分析中的重要依据。
- 举例:在一个包含多个线圈和不同磁路段的复杂磁路中,沿着一个闭合回路计算磁动势和磁阻压降。当一个线圈产生的磁动势使磁场在磁路中沿一个方向,而另一个线圈产生的磁动势可能在某些磁路段使磁场方向相反,通过磁路的基尔霍夫第二定律可以准确地分析磁路中的磁场分布。
6.2铁磁材料的特性
6.2.1铁磁材料的磁化曲线
- 铁磁材料的磁化曲线是描述铁磁材料在外加磁场作用下,磁感应强度 B B B与磁场强度 H H H之间关系的曲线。
- 初始磁化阶段,当磁场强度 H H H较小时,磁感应强度 B B B随 H H H的增加而缓慢增加,这是因为铁磁材料内部的磁畴开始逐渐转向外磁场方向。随着 H H H的进一步增加,磁畴的转向更加剧烈, B B B快速上升,这个阶段称为陡峭上升阶段。当 H H H增加到一定程度后,大部分磁畴已经转向外磁场方向, B B B的增加变得缓慢,逐渐趋近于饱和磁感应强度 B s B_s Bs,此时称为饱和阶段。例如,在变压器铁芯的磁化过程中,当变压器初次级线圈中的电流逐渐增大时,铁芯中的磁场强度 H H H也增大,铁芯的磁感应强度 B B B按照磁化曲线的规律变化,当电流足够大时,铁芯会达到饱和状态,这会对变压器的性能产生影响。
6.2.2磁滞现象与磁滞回线
- 磁滞现象:当外加磁场强度 H H H在正负方向上变化时,铁磁材料的磁感应强度 B B B的变化滞后于 H H H的变化,这种现象称为磁滞现象。
- 磁滞回线:当磁场强度 H H H从 0 0 0开始增加,磁感应强度 B B B沿磁化曲线上升,当 H H H达到最大值 H m H_m Hm后开始减小, B B B并不沿原来的磁化曲线下降,而是沿着一条高于原来曲线的路径下降。当 H H H减小到 − H m -H_m −Hm再增加时, B B B又会沿着另一条路径变化,最终形成一个闭合的曲线,称为磁滞回线。磁滞回线所包围的面积代表了铁磁材料在一个磁化周期内的能量损耗,称为磁滞损耗。例如,在交流电机和变压器等设备中,由于铁芯材料存在磁滞现象,会产生磁滞损耗,这部分能量以热能的形式散失,影响设备的效率。
6.3变压器的工作原理与特性
6.3.1变压器的基本结构与工作原理
- 基本结构:变压器主要由铁芯和绕组两部分组成。铁芯是变压器的磁路部分,通常由硅钢片叠成,目的是减小涡流损耗。绕组分为初级绕组(原绕组)和次级绕组(副绕组),它们分别绕在铁芯上,初级绕组接输入电源,次级绕组接负载。
- 工作原理:根据电磁感应定律,当在初级绕组中通入交流电流时,会在铁芯中产生交变磁通。这个交变磁通会穿过次级绕组,由于磁通的变化,在次级绕组中会感应出电动势。根据法拉第电磁感应定律 e = − N d Φ d t e = -N\frac{d\varPhi}{dt} e=−NdtdΦ( e e e是感应电动势, N N N是绕组匝数, Φ \varPhi Φ是磁通),初级绕组和次级绕组中的感应电动势与它们的匝数成正比。如果初级绕组匝数为 N 1 N_1 N1,次级绕组匝数为 N 2 N_2 N2,则 U 1 U 2 = N 1 N 2 \frac{U_1}{U_2}=\frac{N_1}{N_2} U2U1=N2N1( U 1 U_1 U1和 U 2 U_2 U2分别是初级和次级绕组的电压),这就是变压器的基本工作原理,即通过电磁感应实现电压的变换。
6.3.2变压器的空载运行
- 变压器空载运行是指变压器的次级绕组开路(不接负载)的情况。此时,初级绕组接入交流电源,在初级绕组中会有电流通过,这个电流称为空载电流 I 0 I_0 I0。空载电流主要用于建立铁芯中的主磁通 Φ m \varPhi_m Φm。由于次级绕组开路,没有电流输出,初级绕组的电压 U 1 U_1 U1与感应电动势 E 1 E_1 E1近似相等,根据 U 1 ≈ E 1 = 4.44 f N 1 Φ m U_1 \approx E_1 = 4.44fN_1\varPhi_m U1≈E1=4.44fN1Φm( f f f是电源频率),可以看出电源频率、初级绕组匝数和主磁通之间的关系。同时,空载电流还包含一个无功分量,用于提供建立磁通所需的无功功率,因为铁芯的磁化过程需要无功功率的支持。
6.3.3变压器的负载运行
- 当变压器次级绕组接上负载后,次级绕组中有电流 I 2 I_2 I2通过。根据电磁感应原理,次级电流会产生一个磁通,这个磁通会削弱主磁通。但是,由于电源电压不变,根据 U 1 ≈ E 1 = 4.44 f N 1 Φ m U_1 \approx E_1 = 4.44fN_1\varPhi_m U1≈E1=4.44fN1Φm,主磁通基本保持不变。为了维持主磁通不变,初级绕组中的电流会自动增加,产生一个与次级电流磁通相反的磁通来抵消次级电流磁通的影响。此时,初级绕组电流 I 1 I_1 I1由空载电流 I 0 I_0 I0和负载电流对应的分量组成。并且,根据磁动势平衡原理 N 1 I 1 = N 2 I 2 + N 1 I 0 N_1I_1 = N_2I_2 + N_1I_0 N1I1=N2I2+N1I0,在忽略空载电流的情况下,有 I 1 I 2 = N 2 N 1 \frac{I_1}{I_2}=\frac{N_2}{N_1} I2I1=N1N2,这表明初级和次级绕组的电流与它们的匝数成反比,同时也体现了变压器在负载运行时的电流变换关系。
6.3.4变压器的外特性与效率特性
- 外特性:变压器的外特性是指当电源电压 U 1 U_1 U1不变,负载功率因数 cos φ 2 \cos\varphi_2 cosφ2一定时,次级绕组电压 U 2 U_2 U2随负载电流 I 2 I_2 I2变化的特性。随着负载电流 I 2 I_2 I2的增加,变压器内部的漏阻抗上的压降增加,导致次级绕组电压 U 2 U_2 U2下降。对于不同的负载功率因数,外特性曲线的下降程度不同。当功率因数较低时,电压下降得更明显。
- 效率特性:变压器的效率 η \eta η是指输出功率 P 2 P_2 P2与输入功率 P 1 P_1 P1的比值,即 η = P 2 P 1 × 100 % = U 2 I 2 cos φ 2 U 1 I 1 cos φ 1 × 100 % \eta=\frac{P_2}{P_1}\times100\%=\frac{U_2I_2\cos\varphi_2}{U_1I_1\cos\varphi_1}\times100\% η=P1P2×100%=U1I1cosφ1U2I2cosφ2×100%( cos φ 1 \cos\varphi_1 cosφ1是初级侧功率因数)。变压器的效率不是一个常数,它与负载大小有关。在轻载时,由于铁芯损耗(包括磁滞损耗和涡流损耗)占比较大,效率较低;在负载增加到一定程度时,效率达到最大值;随着负载继续增加,铜损(绕组电阻损耗)增加,效率又会下降。通过合理设计变压器的参数和选择合适的负载,可以提高变压器的效率。