【Linear Algebra】Eigen Vectors and Eigen Values

Introduction

In the last post, we require you should have knowledge about Linear algebra, like eigen vectors and eigen values. So now, we can learn what eigen vectors and eigen values is.

Eigen Vectors and Eigen Values

For a arbitary square matirx A A A, it is exist an eigen vector and eigen value make this equation true.
A v = λ v Av = \lambda v Av=λv
where the v v v is the eigen vector and the λ \lambda λ is the eigen value.

So, how do we find these things?

Firstly, we know this equation must be true.
A v = λ v Av=\lambda v Av=λv
Now, let us put an identity matrix in right side.
A v = λ I v Av=\lambda I v Av=λIv
Then, bring all to left side.
A v − λ I v = 0 Av-\lambda Iv=0 AvλIv=0
If v v v is non-zero then we can change the thing of left side to the determinant.
∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0
Then we can solve for λ \lambda λ using this determinant.

Example: Solve for λ \lambda λ
Start with ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0 :
∣ [ − 6 3 4 5 ] − λ [ 1 0 0 1 ] ∣ = 0 \begin{vmatrix} \begin {bmatrix} -6 & 3\\ 4 & 5\\ \end{bmatrix} -\lambda \begin {bmatrix} 1 & 0\\ 0 & 1\\ \end{bmatrix}\end{vmatrix} =0 [6435]λ[1001]=0
Then:
∣ − 6 − λ 3 4 5 − λ ∣ = 0 \begin{vmatrix} -6-\lambda & 3\\ 4 & 5-\lambda \end{vmatrix} =0 6λ435λ=0
Gets:
( − 6 − λ ) ( 5 − λ ) − 3 × 4 = 0 (-6-\lambda)(5-\lambda)-3\times4=0 (6λ)(5λ)3×4=0
Then get this quadratic equation:
λ 2 + λ − 42 = 0 \lambda^2+\lambda-42=0 λ2+λ42=0
And solve for λ \lambda λ:
λ 1 = − 7 λ 2 = 6 \lambda_1=-7 \quad \lambda_2=6 λ1=7λ2=6
Finally, there two possible eigen values.

Now we get the eigenvalues, then we can solve for their matching eigen vectors.

Start with:
A v = λ v Av=\lambda v Av=λv
Put in the value we know:
[ − 6 3 4 5 ] [ x y ] = 6 [ x y ] \begin {bmatrix} -6 & 3\\ 4 & 5\\ \end{bmatrix} \begin {bmatrix} x\\ y\\ \end{bmatrix} = 6 \begin {bmatrix} x\\ y\\ \end{bmatrix} [6435][xy]=6[xy]
Then we can two equations:
− 6 x + 3 y =   6 x 4 x + 5 y =   6 y \begin{aligned} -6x+3y =&\ 6x\\ 4x+5y =&\ 6y\\ \end{aligned} 6x+3y=4x+5y= 6x 6y
Then we get y = 4 x y=4x y=4x, so the eigen vector is any non-zero multiple of this:
[ 1 4 ] \begin {bmatrix} 1\\ 4\\ \end{bmatrix} [14]
So now we can get the solution:
A v = [ − 6 3 4 5 ] [ 1 4 ] = [ 6 24 ] Av = \begin {bmatrix} -6 & 3\\ 4 & 5\\ \end{bmatrix}\begin {bmatrix} 1\\ 4\\ \end{bmatrix} = \begin {bmatrix} 6\\ 24\\ \end{bmatrix} Av=[6435][14]=[624]
And:
λ v = 6 [ 1 4 ] = [ 6 24 ] \lambda v = 6 \begin {bmatrix} 1\\ 4\\ \end{bmatrix} = \begin {bmatrix} 6\\ 24\\ \end{bmatrix} λv=6[14]=[624]
So, get A v = λ v Av=\lambda v Av=λv

Finally, we get the solution of eigen values and eigen vector.
Now, we know how to solve for eigen values and eigen vector of a arbitary matrix.
Try to find the eigen vector for the other eigenvalue of − 7 -7 7.

Renferences

Eigenvector and Eigenvalue

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值