1.简介
巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波特图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。一阶巴特沃斯滤波器的衰减率为每倍频6分贝,每十倍频20分贝。二阶巴特沃斯滤波器的衰减率为每倍频12分贝、三阶巴特沃斯滤波器的衰减率为每倍频18分贝、如此类推。巴特沃斯滤波器的振幅对角频率单调下降,并且也是唯一的无论阶数,振幅对角频率曲线都保持同样的形状的滤波器。只不过滤波器阶数越高,在阻频带振幅衰减速度越快。其他滤波器高阶的振幅对角频率图和低阶数的振幅对角频率有不同的形状。
特征总结:
-
最大平坦性
-
幅频特性单调下降,相频特性单调下降
-
n越大,其幅频特性就越接近理想状态
2.原理
(1)N阶巴特沃斯滤波器频率响应的模的平方为:
联立得,
(2)拉普拉斯变换
N = 1 , 2, 3 时极点的位置
因为限制系统是因果且稳定的,因此滤波器的极点在左半平面,可以写出滤波器的传递函数如下:
其中,N阶巴特沃斯滤波器分母项对应的各阶系数亦可查表获得,见下表:
(3)双线性变换
设采样周期为T,Wc = 2π * 截止频率,双线性变换可表达为:
(4)二阶巴特沃斯滤波器的设计
已知二阶巴特沃斯滤波器的传递函数为:
将双线性变换表达式代入上式传递函数可知:
则传递函数可表达为:
化简后:
(5)四阶巴特沃斯滤波器的设计
由于R79法规要求对加速度采用4阶巴特沃斯滤波器,所以将双线性变换表达式代入传递函数:
则传递函数可表达为:
化简得:
(6)六阶巴特沃斯滤波器的设计
将双线性变换表达式代入传递函数:
则传递函数可表达为:
化简得: