Markowitz Mean-Variance Model 均值方差
Risk Parity 评先评价
特点在于配置风险,而不是资产,目的在于使得单个资产对总资产风险的贡献是一致的
或者以下:
![在这里插入图片描述](https://img-blog.csdnimg.cn/78421b9977af4deea1c4a8974b523615.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAOTMzNzEx,size_20,color_FFFFFF,t_70,g_se,x_16
Black Litterman 收益率的贝叶斯收缩
与“均值 — 方差”模型相比,Black-Litterman 模型最大的区别在于对收益率的预测。在收益率预测方面,Black-Litterman 最本质的核心是它在贝叶斯框架下使用先验收益率以及新息得到后验收益率,它是一种对收益率的贝叶斯收缩(Bayes shrinkage)
在接下来和均值-方差模型就一致了
Black-Litterman模型可以分为以下四个步骤:
1、计算先验收益 2、设定投资者观点 3、计算后验收益 4、获得组合最优权重
具体步骤:https://www.sohu.com/a/221767940_717243
优缺点
- 均值方差缺点
第一是因为它的输入非常严苛:投资者必须提供待配置投资品的期望收益率和协方差。一旦预测的数值非常离谱,那么资产配置效用的最大化就变成误差的最大化。对于协方差,通过历史数据计算尚且能用,但是对于未来的期望收益率的准确预测却难上加难。二者相较,期望的预测比协方差的预测更加重要
Chopra and Ziemba (1993) 指出,收益率期望的误差对资产配置的影响比协方差的影响高一个数量级。
第二个原因是,它求出的最佳资产配置权重对期望收益率非常敏感。当期望收益率有哪怕仅仅一点变化时,它给出的最佳配置较之前的配置可能发生很大的改变,这样的结果很难被投资者所接受。
- risk parity模型缺点
Risk Parity 这个概念很好,但是限制比较多,它假设投资品之间的夏普率接近,且它们在不同经济环境下收益率均值呈现出负相关性(注意这和时序的负相关性不一样)。