(文献随笔)解析未经治疗的人类黑色素瘤脑转移的生态系统 (Cell, 2022年7月7日)

(文献随笔)解析未经治疗的人类黑色素瘤脑转移的生态系统 (Cell, 2022年7月7日)

Dissecting the treatment-naive ecosystem of human melanoma brain
在这里插入图片描述

Highlights

  • 黑色素瘤颅内外转移的单细胞空间转录图谱
  • 染色体不稳定(Chromosomal instability)与脑转移相关
  • 脑转移更倾向表达神经相关的元程序
  • 巨噬细胞在脑转移瘤中具有促肿瘤发生的表型

Summary

使用sc/snRNA-seq,TCR 和空间转录组测序,共涉及到 32 个样本,其中脑转移(MBM)22 例,颅外转移(ECM)10 例。

Result

样本介绍

  • 一共 32 个样本,其中 5 号脑转移患者采样两次
  • 1-5 号脑转移样本有配对的 TCR 测序数据(这些数据是单细胞测序数据,其他数据均为单细胞核测序)
  • 脑转移 5,6,7,8,11,13,18 颅外转移1,6,8,10。共计 11个样本有空间转录组测序数据

冻存组织与新鲜组织比较

为了验证单细胞测序和单细胞和测序没有太大的区别,将 5 号患者手术后组织马上切一半进行冷冻 12 个月,另一半马上进行单细胞测序。

使用差不多的测序深度和质量控制流程简单分析了一下sn 和 sc测序的基因数和细胞组成差异,结果发现差别不大(但是这个结果只有一个样本,说服力不是很强,之前有文献报道。使用 snRNA 测序出来的细胞数量免疫细胞偏少)
在这里插入图片描述

  • sc
    基因数:2137
    cd45+:3817
    Cd45-:1698
  • sn
    基因数: 2504
    cd45+: 3551
    Cd45- : 1457

在基因表达模式分析发现,压力信号、干扰素信号、活化小胶质细胞信号、线粒体信号在 scRNA-seq 数据中激活程度明显高于 snRNA-seq

在这里插入图片描述

仔细观察 UMAP结果,发现sc/snRNA-seq 数据出来的肿瘤细胞个数基本一致,但是明显的,免疫细胞特别是 T 细胞 scRNA 还是远远多于 snRNA-seq(上文中细胞个数明明差不多,但是为什么 UMAP 图显示差异这么大,所以这里可能得先打个问号?)
在这里插入图片描述

但是,从包括inferCNV 的结果来看的话,大体上sn 和 sc 的结果还是差不多的,虽然细胞数量少,但是因为本身免疫细胞和其他的非肿瘤细胞异质性不是很大,样本数量上去的情况下对后续的分析影响还是不大的,因此文章的这个结论虽然不能 100%的赞成,但是勉强可以接受的。
在这里插入图片描述

Overall, this comparison demonstrates that biological and inferred genomic insights can be gleaned from snRNA-seq data generated from minute frozen samples.

整合数据初步分析

将所有的数据进行整合分析后发现,确实和之前说的那样,肿瘤细胞的占比明显多于其他类型的细胞。(因为绝大部分的数据都是 snRNA-seq 测序,并且肿瘤细胞的细胞核更大,染色体更加的紊乱,转录本更加丰富,所以测到的就更多)
在这里插入图片描述
然后通过使用 inferCNV 的方法定义恶性细胞和非恶性细胞(截断阈值 0.1,阈值的选择主要还是看数据具体的提取方法可以看一下 NC 这篇文章的代码(https://doi.org/10.1038/s41467-020-16164-1))。有意思的是,文章使用免疫细胞作为 Reference,这里主要原因可能是因为间质细胞和内皮细胞太少了。但是没看到他是如何使用 inferCNV定义周期性和非周期性癌细胞。
在这里插入图片描述
其他的非癌细胞就是常规的花里胡哨一通注释,然后发现MBM中的功能异常的 CD8T 细胞数量大于 ECM
在这里插入图片描述

从 F 图中其实几乎看不出任何有用的结论,但是文章还是强行给出了一个承上启下的结论(没用的废话),恶性细胞的染色体不稳定。然后就用了WES 数据说明了一下MBM 的基因组比 ECM 的更加不稳定
在这里插入图片描述
在这里插入图片描述

Among malignant cells, we find significant heterogeneity of un- derlying aneuploidy patterns
这句话挺好用的,可以学一下。以后inferCNV 分析出来的结果不整齐,不知道该怎么解释的时候就可以强行的肿瘤异质性(反正肿瘤这种东西一两句话说不清楚,异质性可以解决一切问题)

染色体不稳定(CIN)

那么,因为之前有研究说明 CIN 是动态变化的并且与肿瘤恶性程度相关。因此设计了一个实验进行验证该结论,将来自同一个患者的不同位置的转移灶培养成细胞系。然后染色数微核的数量。发现,在MBM 中的微核数量明显多于 ECM。并且将两种细胞分别做了细胞迁移实验,发现MBM 的迁移侵袭能力强于 ECM(这个结论在不属于这个实验组的数据中仍然成立)
在这里插入图片描述

微核是指在细胞分裂过程中当染色体或染色体片段未并入其中一个子核时形成的小核的名称。它通常是遗传毒性事件和染色体不稳定的征兆。微核常见于癌细胞中,可能表明基因组损伤事件会增加发育或退行性疾病的风险

然后将两种细胞分别注入免疫缺陷老鼠的心脏血中,若干周后取出老鼠的脑和肝。发现,MBM 的富集在脑子中,而 ECM 大部分还是处于颅外转移。并且从这里也得出了另一个结论,即已经发生转移过后的MBM 仍然有定向脑组织迁移的能力
在这里插入图片描述
在这里插入图片描述

癌细胞相关特征

然后文章 focus 在两个与黑色素瘤耐药和转移强相关的基因 AXL 和 MITF(这里注意一下,MITF 这个基因是可逆的基因,其高表达与黑色素瘤先天性 BRAF 抑制剂耐药相关)。然后文章在后续分析中发现,MBM 的 MITF 与 ECM 相比高表达,但是 AXL 低表达(这里感觉应该给一个control 组进行比较)
在这里插入图片描述
在这里插入图片描述

然后就做了一个必须要做但是感觉没啥意义的差异基因分析。这一部分感觉没什么令人惊艳的结果。但是可以发现,MBM 中高表达神经相关的基因,这可能与脑转移密切相关,因为在我自己的数据分析中发现,晚期的乳腺癌和肺癌也同样高表达神经激活类相关的 marker。

结语

在这篇文章中看到了很多我想要看的结论,但是讲实话分析方法和结论中规中矩没什么亮眼的地方,但是工作量巨大是我迄今为止看到的最大最全面的人脑转移单细胞分析工作,文章中的几乎每一个重要结论都有实验支持。而我之所以写下这个文章的阅读笔记最主要的原因是这篇文章有我想要的几乎所有的结论。

后面关于免疫相关的内容我并不是很感兴趣,就没有继续写了,但是我看完了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值