Python之Pyforest:Pyforest的简介、安装、使用方法之详细攻略

Pyforest是一款Python工具,可以自动导入数据科学领域常用的库,如pandas、matplotlib等,简化了数据科学家的工作流程。当尝试使用未导入的库时,Pyforest会自动完成导入,并将导入语句添加到Jupyter的第一个单元格中。
部署运行你感兴趣的模型镜像

Python之Pyforest:Pyforest的简介、安装、使用方法之详细攻略

 

目录

pyforest简介

pyforest安装

pyforest使用方法


 

 

 

pyforest简介

        pyforest,感受自动导入的幸福,来自[bamboolib]的制作者(https://bamboolib.com)。如果一遍又一遍地写同样的导入是你的能力所不及的,那么就让pyforest替你做这件事吧。使用pyforest,您可以使用所有喜欢的Python库,而无需之前导入它们。如果您使用的包尚未导入,则pyforest将为您导入该包并将代码添加到第一个Jupyter单元中。如果您不使用库,它将不会被导入。
        如果你是一名使用Python的数据科学家。每天你都要开始多本新的木星笔记本,因为你想要探索一些数据或验证一个假设。在您的工作中,您将使用许多不同的库,如“pandas”、“matplotlib”、“seaborn”、“numpy”或“sklearn”。但是,在开始实际工作之前,您总是需要导入您的库。这还有其他几个问题。不可否认,它们很小,但随着时间的推移,它们会累积起来。

  • -很无聊,因为进口的都是一样的。这超出了你的能力范围。
  • -缺少导入扰乱你的工作的自然流程。
  • -有时,您甚至可能需要查找确切的导入声明。例如,import matplotlib。pyplot作为sklearn的plt '或'。整体进口GradientBoostingRegressor”

如果你能专注于使用这些图书馆呢?pyforest提供了以下剩余的解决方案:

  • -你可以像往常一样使用你所有的库。如果还没有导入库,则pyforest将导入库并将导入语句添加到第一个Jupyter单元中。
  • -如果一个库不被使用,它将不会被导入。
  • -你的笔记本保持可复制和共享没有你浪费一个想法的imports。

 

1、使用pyforest

       在您[安装](#installation) pyforest和它的Jupyter扩展之后,您就可以像平常一样继续使用您最喜欢的Python数据科学命令——而不需要编写imports__。

For example, if you want to read a CSV with pandas:

```python
df = pd.read_csv("titanic.csv")
```

pyforest will automatically import pandas for you and add the import statement to the first cell:
```python
import pandas as pd
```

 

 

pyforest安装

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyforest

 

 

pyforest使用方法

# -*- coding: utf-8 -*-
from ._imports import *
from .utils import (
    get_user_symbols,
    install_extensions,
    install_nbextension,
    install_labextension,
)

user_symbols = get_user_symbols()
pyforest_imports = globals().copy().keys()

for import_symbol in pyforest_imports:
    # don't overwrite symbols of the user
    if import_symbol not in user_symbols.keys():
        user_symbols[import_symbol] = eval(import_symbol)


#  set __version__ attribute
from pkg_resources import get_distribution, DistributionNotFound

try:
    __version__ = get_distribution(__name__).version
except DistributionNotFound:
    __version__ = "unknown"
finally:
    del get_distribution, DistributionNotFound


def _jupyter_nbextension_paths():
    return [
        {
            "section": "notebook",
            "src": "static",
            "dest": "pyforest",
            "require": "pyforest/nbextension",
        }
    ]


def _jupyter_labextension_paths():
    return [{"name": "pyforest", "src": "static"}]

 

 

 

 

 

 

 

 

 

 

 

 

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值