ML之DML:分布式机器学习系统性能优化的简介(分析系统性能瓶颈)、性能调优常用库(CUDA的GPU加速+NCCL多卡通信+RDMA高性能网络传输+分布式系统性能监控)及其使用方法之详细攻略

314 篇文章 207 订阅

ML之DistributedML:分布式机器学习系统性能优化的简介(分析系统性能瓶颈)、性能调优常用库(CUDA的GPU加速+NCCL多卡通信+RDMA高性能网络传输+分布式系统性能监控)及其使用方法之详细攻略

目录

分布式训练性能优化

1、分析和定位系统性能瓶颈

2、分布式训练性能优化的简介

3、分布式系统性能监控

分布式机器学习系统的性能调优常用库

1、CUDA进行GPU加速

1.1、使用CUDA来优化矩阵乘法操作

(1)、代码实战—内存访问优化:利用CUDA C/C++编程,减少全局内存访问(共享内存和常量内存)

(2)、代码实战—并行计算优化:利用CUDA C/C++编程,减少线程间同步的开销(优化线程块和网格的组织方式)

1.2、使用CUDA自带的性能分析工具

2、NCCL多卡通信

2.1、使用NCCL实现多卡通信(数据广播和规约操作)来加速分布式训练

(1)、代码实战—基于PyTorch框架使用NCCL实现多卡通信(数据广播和规约操作)的代码实战教程案例

2.2、使用NCCL实现多卡通信(数据读取和梯度归零操作)来加速分布式训练

3、RDMA高性能网络传输


分布式训练性能优化

1、分析和定位系统性能瓶颈

简介

分析和定位系统性能瓶颈

使用方法

使用性能分析工具:例如,使用Linux下的perf工具、Windows下的Windows Performance Toolkit或Visual Studio Profiler等工具,对系统进行性能分析,识别瓶颈。

代码剖析和调试:通过在关键代码段中插入计时器或日志语句,确定具体代码段的执行时间,了解性能瓶颈所在。

必备技能

>> 深度学习框架开发经验。了解PyTorch、TensorFlow等框架实现原理,有优化大模型训练效率的开发经验。

>> 前沿机器学习技术。了解和积累机器学习新技术,有能力将新技术应用到系统中,不断提升系统效率。

>> C++和Python高级编程。熟悉C++和Python多线程、网络编程、内存管理等高级技术,有大型系统开发经验。

>> 分布式系统设计与优化能力。在实现高可用、可扩展的分布式机器学习系统时,需要设计高效的分布式架构并对系统进行优化。

>> 性能调优能力。能够分析和定位系统性能瓶颈,使用CUDA、NCCL、RDMA等技术进行有效的性能优化。

2、分布式训练性能优化的简介

简介

分布式训练性能优化

使用方法

分布式训练性能优化:对于大规模深度学习模型的训练任务,使用分布式训练可以提高训练速度和效率。以下是一个性能优化的示例:

>> 使用NCCL库进行跨GPU的高性能通信,优化模型参数的同步和更新过程。调整通信方式和通信量,减少通信开销。

>> 对分布式训练的数据加载预处理过程进行优化,减少数据传输和处理时间。

>> 使用分布式存储系统,如HDFS或分布式文件系统,优化数据的读取和存储性能。

>> 调整分布式训练的超参(批量大小和学习率),平衡模型收敛速度和通信开销。

3、分布式系统性能监控

简介

使用方法

分布式系统性能监控。例如:

Nvidia提供了Nvprof工具,能分析CUDA和GPU相关的性能参数。

Traceo提供了分布式tracing和监控的开源工具,能定位并分析分布式系统中的性能瓶颈。

实战经验

分布式机器学习系统的性能调优常用库

1、CUDA进行GPU加速

简介

优化策略

CUDA性能优化:

内存访问优化:使用共享内存和常量内存来减少全局内存访问,使用纹理内存来提高访存效率。

并行计算优化:优化线程块和网格的组织方式,减少线程间同步的开销,合并全局内存访问等。

使用CUDA自带的性能分析工具:如NVIDIA Visual Profiler,分析和优化CUDA应用程序的性能。

使用方法

accelerateo.com提供了一个使用CUDA加速矩阵乘法的C代码示例。通过把计算任务 offload 到GPU上执行,可以获得显著的性能提升。

Nvidia的 samples提供了大量CUDA示例代码,包括数组操作、线性代数、神经网络等,可作为学习与参考。

实战经验

GPU加速和优化:使用CUDA进行GPU加速和性能优化是提高深度学习系统性能的重要手段之一。你可以选择一个基于深度学习的任务,例如图像分类或目标检测,然后通过以下步骤进行性能优化:

(1)、使用合适的GPU编程模型和工具,如CUDA C/C++、CUDA库和NVIDIA性能分析工具,对计算密集型任务进行GPU加速。

(2)、分析和优化内存访问模式,减少数据传输时间和内存带宽消耗。

(3)、利用GPU并行计算能力,使用合适的线程块和线程束配置,提高计算效率。

(4)、进行合适的算法优化,如减少冗余计算、使用更高效的矩阵乘法实现等。

1.1、使用CUDA来优化矩阵乘法操作

(1)、代码实战—内存访问优化:利用CUDA C/C++编程,减少全局内存访问(共享内存和常量内存)

简介

矩阵乘法是一个涉及大量内存访问的操作,我们可以使用共享内存和常量内存来减少全局内存访问,并使用纹理内存来提高访存效率。

设计思想

用于在NVIDIA GPU上实现矩阵乘法的CUDA核函数。主要功能是通过使用CUDA的并行计算和内存访问优化技术,对两个输入矩阵A和B进行乘法运算,并将结果保存在输出矩阵C中。

这个CUDA核函数实现了一个基本的矩阵乘法算法,并在处理每个线程块时使用了共享内存来缓存部分A和B矩阵的数据,以减少全局内存访问。通过合理地组织线程块和网格,同时利用GPU上的并行计算能力,可以加速矩阵乘法运算的过程。值得注意的是,代码中的TILE_SIZE应为预定义常量,用于指定每个线程块处理的子矩阵大小。在实际应用中,TILE_SIZE的选择需要结合具体的硬件配置和矩阵大小来进行调整。

代码解读

在这个核函数中,我们首先定义了一个TILE_SIZE常量,它表示共享内存的大小。我们使用共享内存sA和sB来缓存A和B矩阵的部分数据,减少了对全局内存的访问次数。此外,我们通过将A矩阵的一行和B矩阵的一列加载到共享内存中,实现了全局内存访问的合并,从而提高了内存访问效率。

// CUDA C/C++实现 矩阵乘法的CUDA核函数
__global__ void matrixMul(float* A, float* B, float* C, int N) {
    // 计算当前线程处理的元素在结果矩阵C中的行列坐标
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;

    // 声明共享内存用于缓存部分A和B矩阵的数据
    __shared__ float sA[TILE_SIZE][TILE_SIZE];
    __shared__ float sB[TILE_SIZE][TILE_SIZE];

    // 用于累积结果的局部变量
    float sum = 0.0;

    // 循环遍历TILE_SIZE次,处理每个线程块内的一个TILE_SIZE x TILE_SIZE的子矩阵
    for (int t = 0; t < N / TILE_SIZE; t++) {
        // 将A矩阵的一部分复制到共享内存sA
        sA[threadIdx.y][threadIdx.x] = A[row * N + t * TILE_SIZE + threadIdx.x];
        // 将B矩阵的一部分复制到共享内存sB
        sB[threadIdx.y][threadIdx.x] = B[(t * TILE_SIZE + threadIdx.y) * N + col];
        // 等待所有线程完成数据复制,进行线程同步
        __syncthreads();

        // 使用共享内存中的数据进行局部矩阵乘法
        for (int k = 0; k < TILE_SIZE; k++) {
            sum += sA[threadIdx.y][k] * sB[k][threadIdx.x];
        }
        // 等待所有线程完成局部矩阵乘法,进行线程同步
        __syncthreads();
    }

    // 将局部计算结果保存到结果矩阵C中
    C[row * N + col] = sum;
}

(2)、代码实战—并行计算优化:利用CUDA C/C++编程,减少线程间同步的开销(优化线程块和网格的组织方式)

简介

为了优化并行计算,我们需要优化线程块和网格的组织方式,以及减少线程间同步的开销。

设计思想

实现了一个矩阵乘法的函数matrixMultiply,将输入的矩阵A和矩阵B相乘,将结果存储在矩阵C中。

该函数实现了将矩阵乘法的计算任务分配给CUDA设备,并在主机端进行设备同步,以确保正确获取计算结果。

代码解读

在这个启动器函数中,我们将线程块的大小设置为TILE_SIZE x TILE_SIZE,并将网格的大小设置为(N / TILE_SIZE) x (N / TILE_SIZE)。这样做是为了让每个线程块处理一个TILE_SIZE x TILE_SIZE的子矩阵,以便优化共享内存的使用和线程间同步。

该启动器函数使用CUDA的并行计算框架调用矩阵乘法的CUDA核函数,并确保在所有计算完成后进行设备同步,以保证正确的计算结果。

这个函数是一个CUDA启动器函数,用于调用并发执行的CUDA核函数matrixMul来完成矩阵乘法运算。在调用核函数时,通过dim3类型的threadsPerBlock和numBlocks变量来设置线程块和网格的大小。这里假设TILE_SIZE是一个预定义的常量,用于指定每个线程块的大小。然后,通过<<<numBlocks, threadsPerBlock>>>语法来调用matrixMul核函数,并将输入矩阵A和B以及输出矩阵C的指针和大小传递给核函数。

最后,使用cudaDeviceSynchronize()来进行设备同步,确保在启动器函数执行结束之前,所有的核函数执行都已完成。这是必要的,因为CUDA核函数的执行是异步的,设备同步可以保证后续代码对计算结果的正确访问。


// 矩阵乘法的CUDA启动器函数
void matrixMultiply(float* A, float* B, float* C, int N) {
    // 定义线程块的大小
    dim3 threadsPerBlock(TILE_SIZE, TILE_SIZE);
    // 定义网格的大小,每个线程块处理一个TILE_SIZE x TILE_SIZE的子矩阵
    dim3 numBlocks(N / TILE_SIZE, N / TILE_SIZE);
    
    // 调用CUDA核函数 matrixMul,并传入网格和线程块的配置,以及输入输出矩阵的指针和大小
    matrixMul<<<numBlocks, threadsPerBlock>>>(A, B, C, N);

    // 在CUDA核函数执行完成后,进行设备同步,确保所有计算完成。用于在主机代码中进行设备同步,确保之前的核函数执行已经完成,以便在主机端使用矩阵C的结果。
    cudaDeviceSynchronize();
}

1.2、使用CUDA自带的性能分析工具

简介

使用NVIDIA Visual Profiler来分析和优化CUDA应用程序的性能。

实现步骤

(1)、安装NVIDIA Visual Profiler,并确保CUDA开发环境配置正确。

(2)、编译带有优化后的矩阵乘法函数的CUDA应用程序。

(3)、运行NVIDIA Visual Profiler并导入编译后的可执行文件。

(4)、在NVIDIA Visual Profiler中,可以通过“Kernel Analysis”选项卡来查看矩阵乘法核函数的性能指标,包括全局内存访问、共享内存访问、纹理内存访问等。

(5)、根据性能指标和瓶颈点来进行优化,可能需要调整线程块大小、共享内存大小、访存方式等。

(6)、重复以上步骤,直到获得满意的性能优化结果。

经验总结

请注意,在实际的优化过程中,可能还涉及到其他优化技术和方法,例如使用异步内存传输、分块矩阵乘法等。优化的效果取决于硬件配置、矩阵大小等因素,因此需要根据具体情况进行调整。

2、NCCL多卡通信

NCCL文档库NVIDIA Deep Learning NCCL Documentation

简介

优化策略

NCCL性能优化:

选择合适的通信模式:根据应用程序的特点和需求,选择适当的NCCL通信模式,如点对点通信、集合通信等。

数据压缩和流水线:使用数据压缩技术和流水线机制,减少通信数据量和通信延迟。

合理设置NCCL库参数:根据系统配置和应用需求,调整NCCL的环境变量和配置参数,以达到最佳性能。

使用方法

使用NCCL进行多卡设备间通信。例如:

Nvidia NCCL官方提供了AllReduce示例代码,展示了如何使用NCCL实现多卡数据广播、规约等操作。

deeplearning.ai上的学生项目提到了如何使用NCCL加速多卡数据读取与梯度归零。

2.1、使用NCCL实现多卡通信(数据广播和规约操作)来加速分布式训练

目标

使用NCCL实现多卡设备间的数据广播和规约操作,加速分布式深度学习模型的训练过程。

实施步骤

安装和配置NCCL库,确保所有设备上的NCCL版本一致。

在代码中引入NCCL库并初始化NCCL环境。

使用NCCL提供的函数,如ncclAllReduce()实现多卡之间的数据规约操作,将各设备上的数据求和或求平均。

使用ncclBcast()函数实现多卡之间的数据广播,将一个设备上的数据复制到其他设备上。

根据实际需求,合理选择通信模式和通信缓冲区的大小,以及相关参数的设置。

在代码中进行适当的同步操作,确保通信操作的正确执行。

(1)、代码实战—基于PyTorch框架使用NCCL实现多卡通信(数据广播和规约操作)的代码实战教程案例

备注:在开始之前,请确保已安装好NCCL库和PyTorch,并保证所有设备上的NCCL版本一致。

目标

基于PyTorch框架使用NCCL在多卡设备间实现数据广播和规约操作

解读

使用了PyTorch的分布式通信包torch.distributed,并设置通信后端为NCCL。通过dist.all_reduce()函数实现了数据规约操作,将各个设备上的数据求和,并通过dist.broadcast()函数将一个设备上的数据广播到其他设备上。在运行代码之前,确保将代码运行在至少两个具有多个GPU设备的计算节点上,以便观察到通信的效果。
该示例仅演示了如何使用NCCL库进行多卡数据广播和规约操作,并未涉及到深度学习模型的训练。在实际的分布式深度学习训练中,您需要在每个设备上构建相应的模型和优化器,并结合数据并行或模型并行等技术,将梯度聚合到主设备或参数服务器,完成分布式训练的过程。

注意

在实际应用中,为了保证通信的正确执行,还需要适当的同步操作,例如使用torch.cuda.synchronize()等方法,在需要的时候进行显式同步。


import torch
import torch.distributed as dist

# 初始化NCCL环境
def init_nccl():
    # 初始化分布式通信环境,设定通信后端为NCCL
    dist.init_process_group(backend='nccl')

# 定义多卡数据规约操作
def all_reduce_demo(rank, data):
    # 将数据放到对应的GPU设备上
    device = torch.device(f"cuda:{rank}")
    data = data.to(device)
    
    # 使用ncclAllReduce函数进行数据规约操作
    dist.all_reduce(data, op=dist.ReduceOp.SUM)  # 这里使用求和作为演示,也可选择其他Reduce操作,如平均

    return data

# 定义多卡数据广播操作
def broadcast_demo(rank, data):
    # 将数据放到对应的GPU设备上
    device = torch.device(f"cuda:{rank}")
    data = data.to(device)

    # 使用ncclBcast函数进行数据广播
    dist.broadcast(data, src=0)  # 将rank=0的设备上的数据广播到其他设备上

    return data

def main():
    # 初始化NCCL环境
    init_nccl()

    # 假设我们有4块GPU设备
    num_devices = torch.cuda.device_count()
    
    # 假设每个设备上有一个大小为5的随机数据张量
    data = torch.randn(5).cuda()

    # 演示数据规约操作
    reduced_data = all_reduce_demo(0, data.clone())
    if dist.get_rank() == 0:
        print("Reduced data on rank 0:", reduced_data)

    # 演示数据广播操作
    if dist.get_rank() == 0:
        data_to_broadcast = torch.randn(5).cuda()
    else:
        data_to_broadcast = torch.zeros(5).cuda()

    broadcast_data = broadcast_demo(0, data_to_broadcast.clone())
    print("Broadcasted data on rank", dist.get_rank(), ":", broadcast_data)

if __name__ == "__main__":
    main()

2.2、使用NCCL实现多卡通信(数据读取和梯度归零操作)来加速分布式训练

目标

使用NCCL加速多卡设备间的数据读取和梯度归零操作,提高分布式深度学习模型的训练速度。

实施步骤

在代码中引入NCCL库并初始化NCCL环境。

使用NCCL提供的函数,如ncclReduceScatter()实现多卡之间的数据分散操作,将一个设备上的数据分散到其他设备上。

使用ncclAllReduce()函数实现多卡之间的数据规约操作,将各设备上的梯度进行求和或求平均。

在代码中结合相关框架的API,如TensorFlow或PyTorch的分布式训练API,将数据读取和梯度归零操作与NCCL通信操作进行集成。

根据实际需求,调整NCCL通信操作的参数,如通信模式、缓冲区大小等。

在代码中进行适当的同步操作,确保通信操作的正确执行。

3、RDMA高性能网络传输

简介

RDMA通信性能优化:RDMA(Remote Direct Memory Access,远程直接内存访问)是一种高性能网络通信技术,可以在不占用CPU资源的情况下实现高速数据传输

优化策略

RDMA性能优化:

数据缓冲区管理:合理设置发送和接收缓冲区的大小,避免缓冲区溢出或浪费。

批量操作和流水线:通过批量操作和流水线机制,减少RDMA传输的延迟和开销。

连接管理和复用:合理管理RDMA连接,避免频繁建立和断开连接的开销,复用连接以提高性能。

使用方法

使用RDMA进行高性能网络传输。例如:

Kunpeng提供了RDMA over Converged Ethernet(RoCE) 的C/C++代码示例,展示如何实现零拷贝、中断少的高性能网络通信。

Mellanox专门开发了分布式训练框架Horovod,使用RDMA作为底层通信。Horovod提供了详细的配置和使用指南。

实战经验

以下是一个性能优化的案例:

(1)、使用RDMA技术替代传统的Socket通信方式,减少网络通信的延迟和CPU开销。

(2)、调整RDMA的缓冲区和队列大小,优化数据传输的吞吐量和效率。

(3)、使用RDMA的流式传输模式,提高多个并发通信请求的处理能力。

(4)、结合RDMA和GPU加速,实现高性能的分布式训练和推理系统。

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值