前言
本文整理在平面直角系中,坐标系旋转、某点绕着坐标系旋转、坐标点A 绕着点B旋转,求旋转后的点坐标。看了网上好的文章,发现部分有误或不完整,这里简单总结一下。
一、点绕坐标系旋转
坐标系不变,某点 绕坐标系(原点)旋转θ 角度,求旋转后点的坐标;下面画了个草图:
x,y 旋转前的坐标
x1,y1 旋转后的坐标
θ 某点 绕坐标系(原点)旋转θ 角度
逆时针旋转 公式:
x1 = xcos(θ) - ysin(θ)
y1 = xsin(θ) + ycos(θ)
如果是顺时针方向旋转,把θ变成负的即可:-θ
推导过程参考:https://blog.csdn.net/wsx_9999/article/details/80441125
二、坐标系旋转
坐标系A绕着原点,逆时针方向,旋转了θ 度;形成新的坐标系B。
x,y 旋转前的坐标
x1,y1 旋转后的坐标
θ 两个坐标系旋转相差的角度
逆时针旋转 公式:
x1 = xcos(θ) + ysin(θ)
y1 = -xsin(θ) + ycos(θ)
如果是顺时针方向旋转,把θ变成负的即可:-θ
推导过程参考:https://blog.csdn.net/wsx_9999/article/details/80441125
三、点A绕着点B旋转
坐标系不变,点A绕着点B旋转θ角度(逆时针方向),求旋转后点A的坐标;下面画了个草图:
xb,yb 点B的坐标
x,y 点A 旋转前的坐标
x1,y1 点A 旋转后的坐标
θ 某点 绕坐标系(原点)旋转θ 角度
逆时针旋转 公式:
x1=(x-xb)cosθ - (y-yb)sinθ + xb
y1=(y-yb)cosθ + (x-xb)sinθ + yb
如果是顺时针方向旋转,把θ变成负的即可:-θ
推导过程参考:https://www.cnblogs.com/fangsmile/p/8622421.html
参考:
坐标轴的旋转及绕某一点旋转后坐标值求解 https://www.cnblogs.com/fangsmile/p/8622421.html
坐标系旋转后的点坐标、坐标点旋转后的点坐标 https://blog.csdn.net/wsx_9999/article/details/80441125
在平面中,一个点绕任意点旋转θ度后的点的坐标 https://www.cnblogs.com/fengliu-/p/10944151.html