ubuntu 轻松安装Conda

在这篇文章中,将一步步介绍如何下载、安装Conda,并确保它在你的系统上顺利运行。

Conda都是一个强大的工具,它可以帮助我们轻松地管理Python环境和包。

案例系统:ubuntu20.04;Conda选择Anaconda。

1、下载conda安装包

Anaconda清华源下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=D

选择系统Linux、Windows、MacOSX

选择CPU芯片类型:x86_64(常规Inter)、aarch64(ARM嵌入式版)、s390x(IBM系统)

比如是Inter i9的CPU,选择Anaconda3-2024.10-1-Linux-x86_64.sh下载到本地

2、添加可执行权限

来到下载目录中,打开终端,执行命令:

sudo chmod a+x Anaconda3-2024.10-1-Linux-x86_64.sh

其中,Anaconda3-2024.10-1-Linux-x86_64.sh文件名,改为自己下载对应的

3、开始安装

执行命令:

bash Anaconda3-2024.10-1-Linux-x86_64.sh

其中,Anaconda3-2024.10-1-Linux-x86_64.sh文件名,改为自己下载对应的

回车确认~

一直按回车~

出现这里时,输入“yes”,同意Anacoda的协议,才能安装下去的

🚨

这里是安装路径,默认是/home/用户名/anaconda3,

可以修改为其他路径的,需要手动输入

如果用默认路径,回车确认~

🚒

这里是选择conda作为系统的常用环境,默认是no

如果经常使用conda的,输入yes,更方便后面开发~

安装完成啦~

备注:

如果安装过程出错了,需要卸载刚才安装的Anaconda

其中,只需把安装目录全部删除即可,比如:

sudo rm -r /home/lgp/anaconda3

4、conda常用的命令

 1) conda list                                                                         查看安装了哪些包。

 2) conda env list  或  conda info -e                              查看当前存在哪些虚拟环境

 3) conda  -V                                                                           查询conda版本

 4) conda -h                                                                            查询conda的命令使用

4.1 创建conda 虚拟环境

conda create -n your_env_name python=X.X  创建conda虚拟环境;

比如创建名为YOLO-GPU,使用python3.11版本的环境;

conda create  -n YOLO-GPU  python=3.11

4.2 激活不同conda的环境

conda activate  your_env_name  

比如,使用刚才创建的环境:conda activate YOLO-GPU

4.3 删除已有环境

conda remove -n your_env_name(虚拟环境名称) --all , 即可删除

比如,删除刚才创建的环境:conda remove -n YOLO-GPU  --all

4.4 复制conda环境

使用 conda create 命令并结合 -clone 选项来复制环境。

假设想要复制名为 myenv 的环境,并将其新环境命名为 myenv_clone

conda create --name myenv_clone --clone myenv

### 如何在 Ubuntu 系统中使用 Conda 安装 PyTorch #### 准备工作 为了确保安装顺利,在开始之前需确认系统的架构信息。可以通过以下命令查看系统详情以及硬件平台: ```bash lsb_release -a dpkg --print-architecture arch ``` 这些指令有助于验证当前环境是否满足后续软件包的要求[^1]。 #### Miniconda安装 对于希望精简安装过程的用户来说,Miniconda 是一个轻量级的选择。下载并执行适合 Linux 平台的脚本文件来完成 Miniconda 的部署: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 按照提示操作直至结束,这一步骤会自动配置好 `conda` 工具链及其依赖项[^2]。 #### 创建 Python 虚拟环境 (可选) 建议创建一个新的虚拟环境用于隔离不同项目的库版本冲突问题。通过下面这条命令可以轻松建立名为 "pytorch_env" 的新环境,并指定所需的 Python 版本号(此处假设为 3.9): ```bash conda create --name pytorch_env python=3.9 ``` 激活新建好的环境以便继续下一步的操作: ```bash conda activate pytorch_env ``` #### 安装 PyTorch 及其扩展组件 根据目标设备支持情况选择合适的安装方式。如果打算利用 NVIDIA 显卡加速计算,则应优先考虑 GPU 加速版;反之则可以选择 CPU 版本。具体命令如下所示: 针对具有 CUDA 支持的 GPU 设备: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.7 -c pytorch -c nvidia ``` 仅限于无 GPU 或者不计划启用 GPU 功能的情况: ```bash conda install pytorch torchvision cpuonly -c pytorch ``` 上述两条语句分别对应了带有特定 CUDA 版本的支持和纯 CPU 运行模式下的 PyTorch 部署方案[^3][^4]。 另外还可以根据项目需求额外增加一些常用的科学计算类库,比如 NumPy, Pandas 等等。这里列举了一些常见的例子供参考: ```bash conda install numpy pandas scikit-learn matplotlib seaborn ``` 以上就是整个基于 CondaUbuntu 上搭建 PyTorch 开发环境的过程概述。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值