ubutu16.04 搭建深度学习环境
1.安装anaconda集成开发环境
- 内置python丰富的库
- 安装方便
anaconda官网下载完离线安装更快,版本对应如下,自行选择
个人建议 anaconda3.5.1 – python3.6 – cuda9.0 – cudnn 7.0
python | anaconda |
---|---|
2*(系列) | 2.7 |
3.4.0-3.4.2 | 3.5 |
3.5.0-3.5.2 | 3.6 |
3.5.3;3.7 | 3.7 |
安装命令: bash Anaconda3-5.2.0-Linux-x86_64.sh(或自己的安装文件名)
安装后记得加入环境变量
1.vim ~/.bashrc
2.i 进入编辑模式,在文件结尾加入你的anaconda安装目录
export PATH=/home/*/anaconda3/bin:$PATH
3.source ~/.bashrc
2.Cuda 以及 Cudnn 安装(GPU需安装,CPU跳过)
- 专用GPU运算工具
- 深度神经网络计算加速
python-tensorflow-gpu-cuda-cudnn版本对应如下
python | tensorflow-gpu | cuda | cudnn |
---|---|---|---|
2.7 3.3-3.6 | 1.0.0-1.2.0 | 8 | 5.1 |
2.7 3.3-3.6 | 1.3.0-1.4.0 | 8 | 6 |
2.7 3.3-3.6 | 1.5.0-1.11.0 | 9 | 7 |
下载网址为:(如何选择下面有提示)
Cuda:
(https://developer.nvidia.com/cuda-90-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1604&target_type=runfilelocal)
Cudnn:
(https://developer.nvidia.com/rdp/cudnn-archive)
cuda的版本一般按照下图选择,也可选deb(local),后续安装命令不同而已
- 安装命令为:
sudo sh cudaname*.run
- 安装过程询问是否安装驱动,点no,其余yes
- 安装完成,添加环境变量:
1.vim编辑打开:vim ~/.bashrc
2.i 进入编辑状态,将光标移至最后一行,添加以下内容
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
3.source ~/.bashrc
- 成功后测试如下图,如错误卸载重装。
2.2 cudnn 下载安装(即将解压目录移至cuda-9.0下)
一定要与cuda版本相一致,如cuda9.0对应cudnn7.0.5,如下图
- 建议下载压缩包,不建议下载.deb文件
- 下载的其实是个.solitairetheme8压缩包,需要先解压缩:
tar -xzvf cudnnname**
- 安装即是将目录下文件移至你的cuda安装文件中:
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
- 安装测试成功如下图,命令
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
至此cuda cudnn都已安装完成
查看cuda cudnn版本信息:
cat /usr/local/cuda/version.txt
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
3.tensorflow-gpu安装
按照对应版本下载tensorflow-gpu版本,下载网址如下
下载版本链接https://pypi.org/project/tensorflow-gpu/1.10.0/#files
python 3.6 对应为cp36,如下图选择
- 在下载的文件同级目录下安装即可
pip install tensorflow-gpu==1.10.0
- 进入python中,查看是否安装成功
import tensorflow as tf
tf.__version__