openCV—Python(11)—— 图像边缘检测

一、函数简介

1、laplacian算子

函数原型:Laplacian(src, ddepth, dst=None, ksize=None, scale=None, delta=None, borderType=None)

src:图像矩阵

ddepth:深度类型

2、Sobel算子

函数原型:Sobel(src, ddepth, dx, dy, dst=None, ksize=None, scale=None, delta=None, borderType=None)

src:图像矩阵

ddepth:深度类型

dx:x方向

dy:y方向

3、Canny算子

函数原型:Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None)

image:图像矩阵

threshold1:阈值1

threshold1:阈值2

二、实例演练

1、拉普拉斯边缘检测

代码如下:

#encoding:utf-8

#
#laplacian边缘检测
#

import numpy as np
import cv2

image = cv2.imread("H:\\img\\lena.jpg")
image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
cv2.imshow("Original",image)
cv2.waitKey()

#拉普拉斯边缘检测
lap = cv2.Laplacian(image,cv2.CV_64F)#拉普拉斯边缘检测
lap = np.uint8(np.absolute(lap))##对lap去绝对值
cv2.imshow("Laplacian",lap)
cv2.waitKey()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

结果如下:

原图像:

这里写图片描述

laplacian边缘检测结果:

这里写图片描述

2、Soble边缘检测

代码如下:

#encoding:utf-8

#
#Sobel边缘检测
#

import numpy as np
import cv2

image = cv2.imread("H:\\img\\lena.jpg")
image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
cv2.imshow("Original",image)
cv2.waitKey()

#Sobel边缘检测
sobelX = cv2.Sobel(image,cv2.CV_64F,1,0)#x方向的梯度
sobelY = cv2.Sobel(image,cv2.CV_64F,0,1)#y方向的梯度

sobelX = np.uint8(np.absolute(sobelX))#x方向梯度的绝对值
sobelY = np.uint8(np.absolute(sobelY))#y方向梯度的绝对值

sobelCombined = cv2.bitwise_or(sobelX,sobelY)#
cv2.imshow("Sobel X", sobelX)
cv2.waitKey()
cv2.imshow("Sobel Y", sobelY)
cv2.waitKey()
cv2.imshow("Sobel Combined", sobelCombined)
cv2.waitKey()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

结果如下:

原图像:

这里写图片描述

X方向边缘检测结果:

这里写图片描述

Y方向边缘检测结果:

这里写图片描述

XY方向结合边缘检测结果:

这里写图片描述

3、Canny边缘检测

代码如下:

#encoding:utf-8

#
#Canny边缘检测
#

import numpy as np
import cv2

image = cv2.imread("H:\\img\\lena.jpg")#读入图像
image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)#将图像转化为灰度图像
cv2.imshow("Image",image)#显示图像
cv2.waitKey()

#Canny边缘检测
canny = cv2.Canny(image,30,150)
cv2.imshow("Canny",canny)
cv2.waitKey()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

结果如下:

原图像:

这里写图片描述

Canny边缘检测结果:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值