(Windows)半自动化标注-Label-Studio的安装和简单使用

文章介绍了如何安装和使用LabelStudio进行图像数据的标注,包括图像分类、目标检测等任务。同时,提到了MetaAI的SegmentAnything模型的安装和权重下载,以及如何结合LabelStudio-ML进行模型集成和推理。此外,还提供了报错解决方案和标注操作步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

半自动化标注-Label-Studio的安装和简单使用

参考文献https://mp.weixin.qq.com/s/7e28NOnGJi09GqPzzVUPuA

Label Studio 是一款优秀的标注软件,覆盖图像分类、目标检测、分割等领域数据集标注的功能。

LabelStudio
├── backend         // 后端功能
│   ├── examples    // label studio ml 官方示例(非必须)
│   ├── mmdetection // mmdetection 人脸检测模型
│   ├── model       // label studio ml 生成的后端服务 (自动生成)
│   ├── workdir     // 模型训练时工作目录
│   |   ├── fcos_common_base.pth    // 后端模型基础权重文件
│   |   └── latest.pth              // 后端模型最新权重文件
│   └── runbackend.bat  // 生成并启动后端服务的脚本文件
├── dataset         // 实验所用数据集(非必须)      
├── label_studio.sqlite3    // label studio 数据库文件
├── media      
│   ├── export
│   └── upload  // 上传的待标记数据集
└── run.bat     // 启动 label studio 的脚本文件(非必须)

SAM (Segment Anything) 是 Meta AI 推出的分割一切的模型。

安装pytorch

pip install torch==1.10.1+cpu torchvision==0.11.2+cpu torchaudio==0.10.1 -f https://download.pytorch.org/whl/cpu/torch_stable.html

安装所需工具包

pip install opencv-python pycocotools matplotlib onnxruntime onnx -i http://pypi.douban.com/simple/  --trusted-host pypi.douban.com

下载playground:https://github.com/open-mmlab/playground

在这里插入图片描述

在这里插入图片描述

在线安装segment-anything

pip install git+https://github.com/facebookresearch/segment-anything.git

在这里插入图片描述

或者离线安装

https://github.com/facebookresearch/segment-anything

在这里插入图片描述

pip install -e .

在这里插入图片描述

下载Seg模型权重,选择权重(选择其一)(可用浏览器下载)

wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth

wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
# 最优
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth

在这里插入图片描述
在这里插入图片描述

安装label-studio和label-studio-ml

pip install label-studio -i http://pypi.douban.com/simple/  --trusted-host pypi.douban.com --user

pip install label-studio-ml  -i http://pypi.douban.com/simple/  --trusted-host pypi.douban.com --user

启动label-studio-ml

在这里插入图片描述

label-studio-ml start sam --port 8003 --with sam_config=vit_b sam_checkpoint_file=./sam_vit_b_01ec64.pth out_mask=True out_bbox=True device=cpu 
# device=cuda:0 为使用 GPU 推理,如果使用 cpu 推理,将 cuda:0 替换为 cpu
# out_poly=True 返回外接多边形的标注

在这里插入图片描述

启动 Label-Studio

set ML_TIMEOUT_SETUP=40
label-studio start

在这里插入图片描述

在这里插入图片描述

注册登录,创建项目

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

上传图像(数据)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

删除标签

在这里插入图片描述

添加标签

在这里插入图片描述
在这里插入图片描述

<View>
  <Image name="image" value="$image"/>
  <RectangleLabels name="label" toName="image">
    
    
  <Label value="cat" background="#FFA39E"/><Label value="dog" background="#D4380D"/></RectangleLabels>
</View>

在这里插入图片描述

标注

选择标注类型

在这里插入图片描述

开始绘制(只有选了标注类型,才能进行标注)

在这里插入图片描述

删除标注

在这里插入图片描述

点击提交或更新,完成标注

在这里插入图片描述


报错解决-not found ruamel方案:

在这里插入图片描述
报错的py文件里内容改为import ruamel_yaml as yaml

### 如何在 Label Studio 中进行关系抽取标注 #### 设置项目 为了实现关系抽取的任务,在创建一个新的项目时,可以通过 **Settings** 配置项目的具体参数。进入 `projects / 测试项目 / Settings` 页面后,可以在 **General** 部分定义项目的名称描述[^2]。 #### 定义标注界面 在 **Labeling Interface** 下,通过浏览模板 (`Browse Templates`) 来选择适合的关系抽取任务的模板。如果默认模板不满足需求,则可以自定义配置 XML 文件来设计标注界面。例如: ```xml <View> <Relations name="relation" toName="text"> <RelationLabels> <Label value="Person-X works at Organization-Y"/> <Label value="Organization-X is located in Location-Y"/> </RelationLabels> </Relations> <Text name="text" value="$text"/> </View> ``` 上述代码片段展示了如何定义两个实体之间的关系标签。这里 `<RelationLabels>` 节点用于指定可能存在的关系类型,而 `<Text>` 则表示输入文本字段[^1]。 #### 添加标签 在完成模板的选择或定制之后,转到 **Add label names** 步骤以增加具体的标签名。对于关系抽取来说,这些标签通常代表不同类型的语义关联,比如“工作于”或者“位于”。接着可在 **Labels** 界面调整各标签的颜色样式以便区分,并支持移除不需要的标签项。 #### 导入数据 准备好标注环境以后,利用 Import 功能上传待处理的数据集文件至当前项目下。这一步允许用户一次性加载多个文档供后续操作使用。 #### 开始标注 当一切准备就绪后,即可正式开启手动或半自动化标注流程。借助预先训练好的机器学习模型(如果有),能够加速整个过程并提高效率。关于这部分内容可参考官方文档有关 Machine Learning Backend 的集成指南。 --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值