无套利理论与风险中性定价

无套利理论与风险中性定价

一、无套利理论

1. 无套利原则简介
  • 无套利原则:无套利原则是金融市场中最基本的假设之一,它认为在一个没有交易成本和市场摩擦的有效市场中,无法通过买卖金融工具获得无风险的利润。即:若存在套利机会,市场会迅速调整价格,直到该机会消失。

  • 无套利定价:如果市场中存在套利机会,投资者可以通过无风险的买卖组合获得利润。为了避免套利,金融资产的价格必须满足无套利条件。

  • 计算无套利价格:假设一个金融衍生品的现货价格为 S 0 S_0 S0,其未来的支付为 X X X(例如期权到期时的履约价格),无套利价格的计算通常涉及到折现未来支付(考虑到无风险利率):
    P 0 = X ( 1 + r ) T P_0 = \frac{X}{(1 + r)^T} P0=(1+r)TX
    其中, P 0 P_0 P0 是当前价格, X X X 是未来支付, r r r 是无风险利率, T T T 是时间期限。

2. 无套利定价的实例

假设一个股票现价 S 0 = 100 S_0 = 100 S0=100 美元,未来 1 个月(即 1/12 年)内的无风险利率 r = 5 % r = 5\% r=5%,期权到期时的履约价格为 X = 105 X = 105 X=105 美元。则根据无套利原理,期权的当前无套利价格为:
P 0 = 105 ( 1 + 0.05 ) 1 12 ≈ 105 / 1.00417 ≈ 104.59 P_0 = \frac{105}{(1 + 0.05)^{\frac{1}{12}}} \approx 105 / 1.00417 \approx 104.59 P0=(1+0.05)121105105/1.00417104.59
这意味着在没有套利机会的市场中,期权的现货价格应该为 104.59 美元。


二、风险中性概率

1. 风险中性概率的定义
  • 风险中性概率(Risk-neutral probability)是一种假设,假定所有资产的期望回报率都等于无风险利率。在这种假设下,投资者不关心资产的风险,所有的资产定价都可以使用无风险利率进行折现。

  • 风险中性定价:在风险中性世界中,资产价格的演变不再由实际的市场风险和收益率决定,而是根据无风险利率进行计算。也就是说,金融衍生品(例如期权)的定价不依赖于实际的期望收益率,而是依赖于无风险利率和资产的未来价格。

2. 风险中性概率的计算

假设我们有一个简单的二叉树模型,其中股票当前价格为 S 0 = 100 S_0 = 100 S0=100 美元,未来可能涨到 S u = 110 S_u = 110 Su=110 或跌到 S d = 90 S_d = 90 Sd=90,无风险利率为 r = 5 % r = 5\% r=5%。我们可以计算风险中性概率 p p p,使得期望股价等于无风险利率下的股价:
S 0 = p S u + ( 1 − p ) S d ( 1 + r ) S_0 = \frac{p S_u + (1 - p) S_d}{(1 + r)} S0=(1+r)pSu+(1p)Sd
代入数值:
100 = p × 110 + ( 1 − p ) × 90 1.05 100 = \frac{p \times 110 + (1 - p) \times 90}{1.05} 100=1.05p×110+(1p)×90
解得:
p = 100 × 1.05 − 90 110 − 90 = 105 − 90 20 = 0.75 p = \frac{100 \times 1.05 - 90}{110 - 90} = \frac{105 - 90}{20} = 0.75 p=11090100×1.0590=2010590=0.75
所以,涨的概率 p = 0.75 p = 0.75 p=0.75,跌的概率 1 − p = 0.25 1 - p = 0.25 1p=0.25


三、套利定价模型

1. 套利定价模型的应用

套利定价模型(APT)是一种基于无套利原理的多因子模型,用来定价和衡量资产的风险。例如,对于期权或其他衍生品,套利定价模型通常利用无套利的假设来推导其理论价格。

2. 使用无套利模型计算期权价格

考虑一个欧式看涨期权(call option),其当前价格为 S 0 = 100 S_0 = 100 S0=100 美元,履约价格为 X = 105 X = 105 X=105 美元,期权到期日为 1 个月(即 1/12 年),无风险利率 r = 5 % r = 5\% r=5%,且股票的波动率为 σ = 20 % \sigma = 20\% σ=20%

利用Black-Scholes模型(适用于无套利市场)来计算期权价格。公式为:
C = S 0 Φ ( d 1 ) − X e − r T Φ ( d 2 ) C = S_0 \Phi(d_1) - X e^{-rT} \Phi(d_2) C=S0Φ(d1)XerTΦ(d2)
其中:
d 1 = ln ⁡ ( S 0 / X ) + ( r + σ 2 2 ) T σ T d_1 = \frac{\ln(S_0 / X) + (r + \frac{\sigma^2}{2})T}{\sigma \sqrt{T}} d1=σT ln(S0/X)+(r+2σ2)T
d 2 = d 1 − σ T d_2 = d_1 - \sigma \sqrt{T} d2=d1σT
Φ ( ⋅ )  是标准正态分布的累积分布函数. \Phi(\cdot) \text{ 是标准正态分布的累积分布函数.} Φ() 是标准正态分布的累积分布函数.

计算过程

  1. S 0 = 100 S_0 = 100 S0=100 X = 105 X = 105 X=105 T = 1 12 T = \frac{1}{12} T=121 年, r = 5 % r = 5\% r=5% σ = 20 % \sigma = 20\% σ=20%
  2. 计算 d 1 d_1 d1 d 2 d_2 d2
    d 1 = ln ⁡ ( 100 / 105 ) + ( 0.05 + 0. 2 2 2 ) × 1 12 0.2 × 1 12 ≈ − 0.1109 d_1 = \frac{\ln(100/105) + (0.05 + \frac{0.2^2}{2}) \times \frac{1}{12}}{0.2 \times \sqrt{\frac{1}{12}}} \approx -0.1109 d1=0.2×121 ln(100/105)+(0.05+20.22)×1210.1109
    d 2 = d 1 − 0.2 × 1 12 ≈ − 0.1109 − 0.0577 = − 0.1686 d_2 = d_1 - 0.2 \times \sqrt{\frac{1}{12}} \approx -0.1109 - 0.0577 = -0.1686 d2=d10.2×121 0.11090.0577=0.1686
  3. 计算期权价格:
    C = 100 × Φ ( − 0.1109 ) − 105 × e − 0.05 × 1 12 × Φ ( − 0.1686 ) C = 100 \times \Phi(-0.1109) - 105 \times e^{-0.05 \times \frac{1}{12}} \times \Phi(-0.1686) C=100×Φ(0.1109)105×e0.05×121×Φ(0.1686)
    通过查标准正态分布表或利用 Python 计算得到:
    Φ ( − 0.1109 ) ≈ 0.4563 , Φ ( − 0.1686 ) ≈ 0.4332 \Phi(-0.1109) \approx 0.4563, \quad \Phi(-0.1686) \approx 0.4332 Φ(0.1109)0.4563,Φ(0.1686)0.4332
    C ≈ 100 × 0.4563 − 105 × e − 0.0042 × 0.4332 ≈ 45.63 − 45.17 ≈ 0.46 C \approx 100 \times 0.4563 - 105 \times e^{-0.0042} \times 0.4332 \approx 45.63 - 45.17 \approx 0.46 C100×0.4563105×e0.0042×0.433245.6345.170.46

答案:该期权的价格约为 0.46 美元。


四、课堂活动

活动目标

  • 通过案例分析和计算,学生将掌握无套利原理和风险中性定价的实际应用。
  • 通过编程模拟,学生能够深入理解风险中性概率和套利定价模型。

活动安排

  1. 案例分析
    • 题目:给定现货价格 S 0 = 100 S_0 = 100 S0=100,履约价格 X = 105 X = 105 X=105,模拟 3 种不同的风险中性概率(通过改变涨跌幅度和无风险利率),并计算不同市场条件下的期权价格。
    • 计算步骤
      • 给定不同的无风险利率和波动率,使用 Black-Scholes 模型计算期权价格。
  2. 编程任务
    • 学生通过编写 Python 程序模拟期权定价,分别绘制不同无风险利率和波动率对期权价格的影响。

五、Python 代码实现示例

以下 Python 代码用于计算欧式看涨期权的价格,并分析无风险利率、波动率对期权价格的影响。

import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt

# Black-Scholes 定价模型函数
def black_scholes_call(S0, X, T, r, sigma):
    d1 = (np.log(S0 / X) + (r + 0.5 * sigma**2) * T) / (sigma * np.sqrt(T))
    d2 = d1 - sigma * np.sqrt(T)
    return S0 * stats.norm.cdf(d1) - X * np.exp(-r * T) * stats.norm.cdf(d2)

# 参数设置
S0 = 100  # 现货价格
X = 105   # 履约价格
T = 1/12  # 1个月到期
r = 0.05  # 无风险利率
sigma = 0.2  # 波动率

# 计算期权价格
C = black_scholes_call(S0, X, T, r, sigma)
print(f"欧式看涨期权价格: {C:.2f}")

# 绘制不同波动率下的期权价格
sigma_range = np.linspace(0.1, 0.5, 100)
option_prices = [black_scholes_call(S0, X, T, r, sigma) for sigma in sigma_range]

plt.plot(sigma_range, option_prices)
plt.title("期权价格随波动率变化")
plt.xlabel("波动率")
plt.ylabel("期权价格")
plt.grid(True)
plt.show()

代码说明

  • black_scholes_call 函数计算欧式看涨期权价格;
  • 通过 matplotlib 绘制波动率对期权价格的影响图。

六、总结与讨论

  1. 无套利原理
    • 通过案例计算理解
Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源码Python基于Mapreduce批处理的某招聘网站爬虫及可视化展示项目源
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值