【两个正态分布随机变量】独立与相关的关系

前言

如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。


独立一定不相关

X,Y 为两个独立的正态分布随机变量,则协方差 Cov ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] = 0 \text{Cov}(X,Y)=E[XY]-E[X]E[Y]=0 Cov(X,Y)=E[XY]E[X]E[Y]=0,即不相关。


不相关不一定独立

资料参考:Normally distributed and uncorrelated does not imply independent

在这里插入图片描述
但是当 X,Y 满足联合分布为正态分布的要求时,X,Y 不相关等价于 X,Y 独立。(证明参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gene_INNOCENT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值