前言
如果你对这篇文章感兴趣,可以点击「【访客必读 - 指引页】一文囊括主页内所有高质量博客」,查看完整博客分类与对应链接。
独立一定不相关
X,Y 为两个独立的正态分布随机变量,则协方差 Cov ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] = 0 \text{Cov}(X,Y)=E[XY]-E[X]E[Y]=0 Cov(X,Y)=E[XY]−E[X]E[Y]=0,即不相关。
不相关不一定独立
资料参考:Normally distributed and uncorrelated does not imply independent
但是当 X,Y 满足联合分布为正态分布的要求时,X,Y 不相关等价于 X,Y 独立。(证明参考)