概率论复习——如何理解Cov(X,X)=D(X)

Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\}=E(XY)-E(X)E(Y)

Cov(X,X)=E\{[X-E(X)][X-E(X)]\}=E(X^2)-[E(X)]^2=D(X)

1.问题点

Cov(X,Y)反映的是X与Y之间的相关性。X相比于E(X)的变化和Y相比于E(Y)的变化是否一致,即符号是否相同,最后取一个期望,得到整体X与Y之间的相关性。Cov(X,Y)>0表示X相比于均值E(X)的变化趋势和Y相比于E(Y)的变化趋势相似,X与Y正相关;Cov(X,Y)<0,X与Y负相关。

照这样理解,那么Cov(X,X)应该也是衡量X与X之间的相关性。但是结果为什么是D(X)呢?我们知道,D(X)反映的是X相比于E(X)的波动情况。怎么会和相关性扯上关系呢?

2.解答

Cov(X,X)=D(X)也可以看作X与X之间的相关性,即正相关,因为D(X)=\sigma^2\geqslant 0。而且D(X)的值越大,说明正相关的程度越大,也就是一个X的变化非常剧烈,但是另一个X和它居然变化保持一致,说明他们之间的相关性很大。也就是说,D(X)除了能够反应X的波动性之外,还能够在一定程度上反应X与自身的相关性。

但是,在实际上,我们不想将数据本身的波动性和它与其他变量的相关性扯上关系,怎么办呢,就需要进行归一化。

3.补充——协方差的归一化

\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}

这样\rho(X,X)=1,表示X与X的完全一致,完全相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值