问题
本文首先说明了一个问题就是NMS是一个非常重要的去除预测结果中重复的后处理过程。一些工作已经发现在NMS中使用IOU来作为排序的标准能够取得更好的效果。这里作者还用一个实验证明了上述说法的正确性。
上表中的Ground truth IoU表示的是通过计算预测的边界框与基准值之间的IoU作为NMS中的分数的标准。从上表的结果可以看出,在使用IoU来知道NMS之后,模型的精度得到了非常大的提高。此外,之前的一些工作已经做出了使用预测IoU而不是预测class score来作为NMS的评分标准。大部分方法是通过增加一个IoU分支来直接简单的预测IoU,但是这些方法存在着两个问题:
-
直接增加一个IoU预测分支,而没有提取一些对于IoU预测很重要的特征。
-
另一个问题是IoU的预测存在着不对齐的问题。
具体情况如上图所示,上述结果展示的是经过refine之后的IoU的分布和没有经过Refine的IoU的分布。在训练的时候,IoU预测分支是使用的proposal的特征和基准框之间IoU,但是在测试时候,这个预测值被当成了是预测的边界框与基准框之间的IoU.两者的IoU分布又不一致,这就带来了一定的不对齐问题。下面介绍作者针对上述两个问题提出的解决方案。
解决方法
没有相关特征的问题
针对上述问题,作者通过提出两个模型来解决。这两个模型分别叫 Attentive Corner Agg