自监督语义分割面模型——(MAE)论文阅读与代码解析

1、摘要计算机视觉之MAE(掩码自编码器)

本文证明了掩码自编码器(MAE)是一种可扩展的计算机视觉自监督学习算法。我们的MAE方法很简单:我们屏蔽输入图像的随机补丁并重建缺失的像素。它基于两个核心设计。首先,我们开发了一个非对称编码器-解码器架构,其中一个编码器仅对补丁的可见子集(没有掩码令牌)进行操作,以及一个轻量级解码器,该解码器从潜在表示和掩码令牌重建原始图像其次,我们发现掩盖输入图像的高比例,例如75%,产生了一个重要的和有意义的自我监督任务。这两种设计的结合使我们能够高效地训练大型模型:我们加速了训练(3倍或更多)并提高了准确性。我们的可扩展方法允许学习泛化良好的大容量模型:例如,在仅使用ImageNet-1K数据的方法中,vanilla ViT-Huge模型达到了最好的准确率(87.8%)。下游任务的迁移性能优于监督预训练,并显示出有希望的缩放行为。
在这里插入图片描述

我们的MAE架构。在预训练过程中,图像补丁的一个大的随机子集(例如75%)被屏蔽掉。该编码器应用于可见补丁的小子集。在编码器之后引入掩码令牌,然后由一个小型解码器处理完整的编码补丁和掩码令牌,以像素为单位重建原始图像。预训练后,丢弃解码器,将编码器应用于未损坏的图像(完整的补丁集)进行识别任务。

2、环境搭建

conda create -n mae python=3.8 -y
conda activate mae
pip install timm==0.3.2 -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip install tensorboard -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip install matplotlib   -i https://pypi.tuna.tsinghua.edu.cn/simple
import torch

if torch.cuda.is_available():
    print("GPU 可用")
else:
    print("GPU 不可用")

3、问题

1、导入torch.__six库有问题

在这里插入图片描述解决方法
在这里插入图片描述

import torch
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
if TORCH_MAJOR == 1 and TORCH_MINOR < 8:
    from torch._six import container_abcs
else:
    import collections.abc as container_abcs

2、 问题 module ‘numpy’ has no attribute ‘float’.

在这里插入图片描述

pip install --force-reinstall --no-deps numpy==1.23.5
pip install  numpy==1.23.5  -i https://pypi.tuna.tsinghua.edu.cn/simple

4、MAE

(1)encoder使用的vit预训练没模型

在这里插入图片描述

(2)微调预训练的 MAE 以进行分类(Evaluation)

在这里插入图片描述

(1)Evaluate ViT-Base in a single GPU (${IMAGENET_DIR} is a directory containing {train, val} sets of ImageNet):

python main_finetune.py --eval --resume mae_finetuned_vit_base.pth --model vit_base_patch16 --batch_size 16 --data_path ${IMAGENET_DIR}
python main_finetune.py --eval --resume models/mae_finetuned_vit_base.pth --model vit_base_patch16  --batch_size 16 --data_path dataset/imagenet_1k

在这里插入图片描述

(2)评估 ViT-Large:

python main_finetune.py --eval --resume mae_finetuned_vit_large.pth --model vit_large_patch16 --batch_size 16 --data_path ${IMAGENET_DIR}
python main_finetune.py --eval --resume models/mae_finetuned_vit_large.pth --model vit_large_patch16 --batch_size 16 --data_path dataset/imagenet_1k

在这里插入图片描述
(3)评估 ViT-Huge

python main_finetune.py --eval --resume mae_finetuned_vit_huge.pth --model vit_huge_patch14 --batch_size 16 --data_path ${IMAGENET_DIR}
python main_finetune.py --eval --resume models/mae_finetuned_vit_huge.pth --model vit_huge_patch14 --batch_size 16 --data_path dataset/imagenet_1k

在这里插入图片描述

(3)模型微调(Fine-tuning)

multi-node distributed training

(1)要使用多节点分布式训练进行微调,请在 4 个节点(每个节点有 8 个 GPU)上运行以下命令:
首先安装submit

pip install submitit -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
python submitit_finetune.py \
    --job_dir ${JOB_DIR} \
    --nodes 4 \
    --batch_size 32 \
    --model vit_base_patch16 \
    --finetune ${PRETRAIN_CHKPT} \
    --epochs 100 \
    --blr 5e-4 --layer_decay 0.65 \
    --weight_decay 0.05 --drop_path 0.1 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
    --dist_eval --data_path ${IMAGENET_DIR}

这里,有效批量大小为 32(batch_size每个 GPU)* 4 ( nodes) * 8(每个节点的 GPU)= 1024。
blr是基础学习率。实际值通过线性缩放规则lr计算:lr = blr * effective batch size / 256。
我们使用不同的随机种子进行了 4 次试验。结果为 83.63、83.66、83.52、83.46(平均值 83.57,标准差 0.08)。
在 32 个 V100 GPU 上的训练时间约为 7 小时 11 分钟。

(2)ViT-Large 的脚本:

python submitit_finetune.py \
    --job_dir ${JOB_DIR} \
    --nodes 4 --use_volta32 \
    --batch_size 32 \
    --model vit_large_patch16 \
    --finetune ${PRETRAIN_CHKPT} \
    --epochs 50 \
    --blr 1e-3 --layer_decay 0.75 \
    --weight_decay 0.05 --drop_path 0.2 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
    --dist_eval --data_path ${IMAGENET_DIR}

我们使用不同的随机种子进行了 4 次试验。结果为 85.95、85.87、85.76、85.88(平均值 85.87,标准差 0.07)。
在 32 个 V100 GPU 上,训练时间约为 8 小时 52 分钟。
(3)ViT-Huge 的脚本:

python submitit_finetune.py \
    --job_dir ${JOB_DIR} \
    --nodes 8 --use_volta32 \
    --batch_size 16 \
    --model vit_huge_patch14 \
    --finetune ${PRETRAIN_CHKPT} \
    --epochs 50 \
    --blr 1e-3 --layer_decay 0.75 \
    --weight_decay 0.05 --drop_path 0.3 --reprob 0.25 --mixup 0.8 --cutmix 1.0 \
    --dist_eval --data_path ${IMAGENET_DIR}

在 64 个 V100 GPU 中,训练时间约为 13 小时 9 分钟。

single-node training

(1)要通过单节点训练微调我们预先训练的 ViT-Base ,请在具有 8 个 GPU 的 1 个节点上运行以下命令:

OMP_NUM_THREADS=1 python -m torch.distributed.launch --nproc_per_node=8 main_finetune.py \
    --accum_iter 4 \
    --batch_size 32 \
    --model vit_base_patch16 \
    --finetune ${PRETRAIN_CHKPT} \
    --epochs 100 \
    --blr 5e-4 --layer_decay 0.65 \
    --weight_decay 0.05 --drop_path 0.1 --mixup 0.8 --cutmix 1.0 --reprob 0.25 \
    --dist_eval --data_path ${IMAGENET_DIR}

这里有效的批量大小是 32 (batch_size每个 GPU) * 4 ( accum_iter) * 8 (GPU) = 1024。–accum_iter 4模拟 4 个节点

Linear Probing

在4个节点上运行以下命令,每个节点8个gpu:

python submitit_linprobe.py \
    --job_dir ${JOB_DIR} \
    --nodes 4 \
    --batch_size 512 \
    --model vit_base_patch16 --cls_token \
    --finetune ${PRETRAIN_CHKPT} \
    --epochs 90 \
    --blr 0.1 \
    --weight_decay 0.0 \
    --dist_eval --data_path ${IMAGENET_DIR}

在这里插入图片描述

(4)Pre-training(预训练MAE)

要使用多节点分布式训练预训练 ViT-Large(推荐默认值),请在 8 个节点(每个节点有 8 个 GPU)上运行以下命令:

python submitit_pretrain.py \
    --job_dir ${JOB_DIR} \
    --nodes 8 \
    --use_volta32 \
    --batch_size 64 \
    --model mae_vit_large_patch16 \
    --norm_pix_loss \
    --mask_ratio 0.75 \
    --epochs 800 \
    --warmup_epochs 40 \
    --blr 1.5e-4 --weight_decay 0.05 \
    --data_path ${IMAGENET_DIR}

在这里插入图片描述

5、MMSegmention用法

要使用其他存储库的预训练模型,需要转换关键字。
我们在tools目录中提供了一个beit2mmseg.py脚本,用于将MAE模型的关键字从官方存储库转换为MMSegmentation样式。

python tools/model_converters/beit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
python tools/model_converters/beit2mmseg.py https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth pretrain/mae_pretrain_vit_base_mmcls.pth
python tools/model_converters/beit2mmseg.py https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_large.pth pretrain/mae_pretrain_vit_large_mmcls.pth

此脚本转换模型并将PRETRAIN_PATH转换后的模型存储在STORE_PATH.
在我们的默认设置中,预训练模型可以定义如下:
在这里插入图片描述
验证模型的单尺度结果:

sh tools/dist_test.sh \
work_dirs/runs/train/selfup/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k.py checkpoints/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth  --eval mIoU
python  tools/test.py --config work_dirs/runs/train/selfup/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k.py  --checkpoint checkpoints/mae/upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth  --eval  mIoU

由于相对位置嵌入要求输入长宽相等,因此采用滑动窗口进行多尺度推理。所以我们设置min_size=512,即最短边为512。所以config的多尺度推理是单独进行的,而不是’–aug-test’。对于多尺度推理:

sh tools/dist_test.sh \
configs/mae/upernet_mae-base_fp16_512x512_160k_ade20k_ms.py \
upernet_mae-base_fp16_8x2_512x512_160k_ade20k_20220426_174752-f92a2975.pth $GPUS --eval mIoU

在这里插入图片描述

mmsegmentation/mmseg/models/backbones/mae.py

# Copyright (c) OpenMMLab. All rights reserved.import math
import math

import torch
import torch.nn as nn
from mmcv.cnn.utils.weight_init import (constant_init, kaiming_init,
                                        trunc_normal_)
from mmcv.runner import ModuleList, _load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm

from mmseg.utils import get_root_logger
from ..builder import BACKBONES
from .beit import BEiT, BEiTAttention, BEiTTransformerEncoderLayer


class MAEAttention(BEiTAttention):
    """Multi-head self-attention with relative position bias used in MAE.
    具有相对位置偏差的多头自注意在MAE中的应用

    This module is different from ``BEiTAttention`` by initializing the
    relative bias table with zeros.
    """

    def init_weights(self):
        """Initialize relative position bias with zeros."""

        # As MAE initializes relative position bias as zeros and this class
        # inherited from BEiT which initializes relative position bias
        # with `trunc_normal`, `init_weights` here does
        # nothing and just passes directly

        pass


class MAETransformerEncoderLayer(BEiTTransformerEncoderLayer):
    """Implements one encoder layer in Vision Transformer.

    This module is different from ``BEiTTransformerEncoderLayer`` by replacing
    ``BEiTAttention`` with ``MAEAttention``.
    """

    def build_attn(self, attn_cfg):
        self.attn = MAEAttention(**attn_cfg)


@BACKBONES.register_module()
class MAE(BEiT):
    """VisionTransformer with support for patch.

    Args:
        img_size (int | tuple): Input image size. Default: 224.
        patch_size (int): The patch size. Default: 16.
        in_channels (int): Number of input channels. Default: 3.
        embed_dims (int): embedding dimension. Default: 768.
        num_layers (int): depth of transformer. Default: 12.
        num_heads (int): number of attention heads. Default: 12.
        mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
            Default: 4.MLP隐藏维度与编码维度之比
        out_indices (list | tuple | int): Output from which stages.
            Default: -1.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0
        drop_path_rate (float): stochastic depth rate. Default 0.0.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN')
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        patch_norm (bool): Whether to add a norm in PatchEmbed Block.
            Default: False.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Default: False.
        num_fcs (int): The number of fully-connected layers for FFNs.
            Default: 2.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        pretrained (str, optional): model pretrained path. Default: None.
        init_values (float): Initialize the values of Attention and FFN
            with learnable scaling. Defaults to 0.1.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 in_channels=3,
                 embed_dims=768,
                 num_layers=12,
                 num_heads=12,
                 mlp_ratio=4,
                 out_indices=-1,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_cfg=dict(type='LN'),
                 act_cfg=dict(type='GELU'),
                 patch_norm=False,
                 final_norm=False,
                 num_fcs=2,
                 norm_eval=False,
                 pretrained=None,
                 init_values=0.1,
                 init_cfg=None):
        super(MAE, self).__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dims=embed_dims,
            num_layers=num_layers,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            out_indices=out_indices,
            qv_bias=False,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            patch_norm=patch_norm,
            final_norm=final_norm,
            num_fcs=num_fcs,
            norm_eval=norm_eval,
            pretrained=pretrained,
            init_values=init_values,
            init_cfg=init_cfg)

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))

        self.num_patches = self.patch_shape[0] * self.patch_shape[1]
        self.pos_embed = nn.Parameter(
            torch.zeros(1, self.num_patches + 1, embed_dims))

    def _build_layers(self):
        dpr = [
            x.item()
            for x in torch.linspace(0, self.drop_path_rate, self.num_layers)
        ]
        self.layers = ModuleList()
        for i in range(self.num_layers):
            self.layers.append(
                MAETransformerEncoderLayer(
                    embed_dims=self.embed_dims,
                    num_heads=self.num_heads,
                    feedforward_channels=self.mlp_ratio * self.embed_dims,
                    attn_drop_rate=self.attn_drop_rate,
                    drop_path_rate=dpr[i],
                    num_fcs=self.num_fcs,
                    bias=True,
                    act_cfg=self.act_cfg,
                    norm_cfg=self.norm_cfg,
                    window_size=self.patch_shape,
                    init_values=self.init_values))

    def fix_init_weight(self):
        """Rescale the initialization according to layer id.

        This function is copied from  https://github.com/microsoft/unilm/blob/master/beit/modeling_pretrain.py. # noqa: E501
        Copyright (c) Microsoft Corporation
        Licensed under the MIT License
        """

        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.layers):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.ffn.layers[1].weight.data, layer_id + 1)

    def init_weights(self):

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        self.apply(_init_weights)
        self.fix_init_weight()

        if (isinstance(self.init_cfg, dict)
                and self.init_cfg.get('type') == 'Pretrained'):
            logger = get_root_logger()
            checkpoint = _load_checkpoint(
                self.init_cfg['checkpoint'], logger=logger, map_location='cpu')
            state_dict = self.resize_rel_pos_embed(checkpoint)
            state_dict = self.resize_abs_pos_embed(state_dict)
            self.load_state_dict(state_dict, False)
        elif self.init_cfg is not None:
            super(MAE, self).init_weights()
        else:
            # We only implement the 'jax_impl' initialization implemented at
            # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353  # noqa: E501
            # Copyright 2019 Ross Wightman
            # Licensed under the Apache License, Version 2.0 (the "License")
            trunc_normal_(self.cls_token, std=.02)
            for n, m in self.named_modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_(m.weight, std=.02)
                    if m.bias is not None:
                        if 'ffn' in n:
                            nn.init.normal_(m.bias, mean=0., std=1e-6)
                        else:
                            nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Conv2d):
                    kaiming_init(m, mode='fan_in', bias=0.)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
                    constant_init(m, val=1.0, bias=0.)

    def resize_abs_pos_embed(self, state_dict):
        if 'pos_embed' in state_dict:
            pos_embed_checkpoint = state_dict['pos_embed']
            embedding_size = pos_embed_checkpoint.shape[-1]
            num_extra_tokens = self.pos_embed.shape[-2] - self.num_patches
            # height (== width) for the checkpoint position embedding
            orig_size = int(
                (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
            # height (== width) for the new position embedding
            new_size = int(self.num_patches**0.5)
            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                                embedding_size).permute(
                                                    0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens,
                    size=(new_size, new_size),
                    mode='bicubic',
                    align_corners=False)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                state_dict['pos_embed'] = new_pos_embed
        return state_dict

    def forward(self, inputs):
        B = inputs.shape[0]

        x, hw_shape = self.patch_embed(inputs)

        # stole cls_tokens impl from Phil Wang, thanks
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)
        x = x + self.pos_embed

        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i == len(self.layers) - 1:
                if self.final_norm:
                    x = self.norm1(x)
            if i in self.out_indices:
                out = x[:, 1:]
                B, _, C = out.shape
                out = out.reshape(B, hw_shape[0], hw_shape[1],
                                  C).permute(0, 3, 1, 2).contiguous()
                outs.append(out)

        return tuple(outs)

配置文件解析

norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
    type='EncoderDecoder', #type:要构建的模型的类型
    pretrained='work_dirs/pretrain/mae/mae_pretrain_vit_base_mmcls.pth',#预训练模型的位置
    backbone=dict(
        type='MAE',#骨干模块的类型
        img_size=(512, 512),
        patch_size=16,
        in_channels=3,
        embed_dims=768,
        num_layers=12,
        num_heads=12,
        mlp_ratio=4,
        out_indices=[3, 5, 7, 11],
        attn_drop_rate=0.0,
        drop_path_rate=0.1,
        norm_cfg=dict(type='LN', eps=1e-06),
        act_cfg=dict(type='GELU'),
        norm_eval=False,
        init_values=1.0),           
    neck=dict(type='Feature2Pyramid', embed_dim=768, rescales=[4, 2, 1, 0.5]),#颈部结构连接ViT主干和解码器头。
    decode_head=dict(
        type='UPerHead',
        in_channels=[768, 768, 768, 768],
        in_index=[0, 1, 2, 3],
        pool_scales=(1, 2, 3, 6),
        channels=768,
        dropout_ratio=0.1,
        num_classes=150,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=dict(
        type='FCNHead',
        in_channels=768,
        in_index=2,
        channels=256,
        num_convs=1,
        concat_input=False,
        dropout_ratio=0.1,
        num_classes=150,
        norm_cfg=dict(type='SyncBN', requires_grad=True),
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    train_cfg=dict(),
    test_cfg=dict(mode='slide', crop_size=(512, 512), stride=(341, 341)))
dataset_type = 'ADE20KDataset'
data_root = 'data/ade/ADEChallengeData2016'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
crop_size = (512, 512)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', reduce_zero_label=True),
    dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
    dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=255),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_semantic_seg'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(2048, 512),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=4,
    train=dict(
        type='ADE20KDataset',
        data_root='data/ade/ADEChallengeData2016',
        img_dir='images/training',
        ann_dir='annotations/training',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', reduce_zero_label=True),
            dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
            dict(type='RandomCrop', crop_size=(512, 512), cat_max_ratio=0.75),
            dict(type='RandomFlip', prob=0.5),
            dict(type='PhotoMetricDistortion'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size=(512, 512), pad_val=0, seg_pad_val=255),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_semantic_seg'])
        ]),
    val=dict(
        type='ADE20KDataset',
        data_root='data/ade/ADEChallengeData2016',
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(2048, 512),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(
        type='ADE20KDataset',
        data_root='data/ade/ADEChallengeData2016',
        img_dir='images/validation',
        ann_dir='annotations/validation',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(2048, 512),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook', by_epoch=False),
        dict(type='TensorboardLoggerHook')
    ])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
cudnn_benchmark = True
optimizer = dict(
    type='AdamW',
    lr=0.0001,
    betas=(0.9, 0.999),
    weight_decay=0.05,
    constructor='LayerDecayOptimizerConstructor',
    paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.65))
optimizer_config = dict()
lr_config = dict(
    policy='poly',
    warmup='linear',
    warmup_iters=1500,
    warmup_ratio=1e-06,
    power=1.0,
    min_lr=0.0,
    by_epoch=False)
runner = dict(type='IterBasedRunner', max_iters=160000)
checkpoint_config = dict(by_epoch=False, interval=16000)
evaluation = dict(
    interval=16000,
    metric=['mIoU', 'mFscore'],
    pre_eval=True,
    save_best='auto')
fp16 = dict(loss_scale='dynamic')
work_dir = 'work_dirs/runs/train/selfup/mae'
gpu_ids = [0]
auto_resume = False

代码原理

(1)mae_vit_large_patch16

def mae_vit_large_patch16_dec512d8b(**kwargs):
    model = MaskedAutoencoderViT(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16,
        decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
        mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
    return model

在这里插入图片描述

位置编码
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)MAE encoder

在这里插入图片描述

在这里插入图片描述

(3)MAE decoder

在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
监督深度估计是一项非常有挑战性的任务,因为它需要在没有真实深度地图的情况下从单张图像中推断出深度信息。基于语义分割的无监督深度估计算法是一种常见的方法,它通过将图像分割成不同的语义区域,然后利用这些区域之间的关系来推断深度信息。 以下是一种基于语义分割的无监督深度估计算法的设计和验证步骤: 1. 数据集准备:选择一个适当的数据集,例如KITTI、NYU Depth v2等,这些数据集通常包含RGB图像和真实深度地图。 2. 训练语义分割模型:使用上述数据集训练一个语义分割模型,例如FCN、SegNet等。 3. 生成语义分割标签:使用已经训练好的语义分割模型对数据集中的RGB图像进行语义分割,并生成对应的语义分割标签。 4. 生成深度估计标签:使用语义分割标签来生成深度估计标签,这可以通过将每个语义区域的中心点与相邻区域的中心点之间的距离作为深度值来实现。 5. 训练深度估计网络:使用生成的深度估计标签训练一个深度估计网络,例如DepthNet、DispNet等。 6. 验证深度估计性能:使用验证集中的图像对训练好的深度估计网络进行测试,并计算其深度估计性能指标,例如平均绝对误差(MAE)、均方误差(MSE)等。 7. 优化算法:根据深度估计性能指标对算法进行优化,例如调整网络结构、调整超参数等。 通过以上步骤,可以设计和验证一种基于语义分割的无监督深度估计算法。需要注意的是,该算法的性能取决于语义分割模型的准确性和深度估计网络的能力,因此需要对这两个模型进行充分的训练和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值