Sparse-YOLO: Hardware/Software Co-Design of an FPGA Accelerator for YOLOv2

该文提出一种针对CPU+FPGA异构平台的YOLOv2软硬件协同设计方法,利用ABM-SpConv算法进行稀疏卷积,减少计算量7倍。通过神经网络剪枝、聚类和量化优化,提升硬件效率。介绍了基于FPGA的加速器设计流程,包括数据加载存储、稀疏卷积单元、硬件最大池化单元等,并探讨了两种HW/SW分区策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ABSTRACT

  YOLO是最流行的检测框架之一,它在速度和准确性之间进行了最佳的权衡。然而,由于CNN固有的高计算工作量,在针对低能耗的高通量处理时仍然具有挑战性。该方法提出一种针对CPU+ FPGA异构平台的软硬件协同设计方法。首先,将一种新的稀疏卷积算法扩展到YOLOv2框架中,然后开发了一种基于异步执行并行卷积核的资源高效FPGA加速架构。其次,引入了硬件感知神经网络剪枝、聚类和量化等算法级优化方案,成功地将YOLOv2算法的计算量节省了7倍;最后,提出了一种基于FPGA的加速器设计的端到端设计空间探索流程,研究并实现了两种硬件/软件分区策略。

1 介绍

  虽然CNN是计算密集型的,但最近的研究表明通过对用于推理计算的CNN模型进行权重剪枝和量化,可以显著降低计算工作量和内存带宽需求。在硬件层面,还研究了专用加速器/处理器,以利用卷积算法固有的并行性,进一步加快计算速度。
  在所有的硬件平台中,现场可编程门阵列(fpga)由于其灵活的架构(包括大量处理元件、片上存储块和可重构互连)而受到越来越多的关注,非常低的功耗和快速的开发周期(特别是借助基于高级合成(HLS)的工具)。
  根据一些现有基于FPGA加速的YOLO算法可以分成三类:

  1. 第一个设计利用了CNN推理计算固有的并行性,以一种直接的方式执行空间卷积算法,在大量的数字信号处理器(DSP)块上执行大量的乘法累加(MAC)操作。
  2. 另一类方案用低位或单位逻辑运算(如AND或XOR)代替DSP对MAC运算的要求,使FPGA的逻辑资源通常比DSP块更丰富。可以开发更高效的硬件电路,打破片上DSP资源的限制。
  3. 第三种类型的加速器利用先进的卷积算法,如频域卷积方案,在硬件设计上,与直接的空间卷积算法相比,减少了计算工作量(即MAC操作的数量),反过来,为所实施的加速器获得了可观的性能增益。

  
  本文主要贡献:

  1. 针对基于CPU+ fpga的异构计算平台开发了专用加速器架构。
  2. 提出了一种端到端软硬件协同设计(HW-SW)工作流程,涵盖了从算法级神经网络压缩到硬件级秒级电路设计和体系结构设计空间探索(DSE)的所有重要研究课题。
  3. 针对不同的硬件设置,提出了两种HW/SW分区策略。

2 背景

2.1 YOLOv2算法

在这里插入图片描述

2.2 ABM-SpConv算法

  ABM-SpConv算法是一种特殊的稀疏卷积方法,旨在灵活平衡地利用FPGA加速器的片上逻辑和DSP资源。该方案的核心思想是将卷积计算中涉及到的累加和乘运算解耦为两个独立的阶段,通过共享唯一的量化权值,使乘法的计算复杂度降低到一个较低的累加速率。它的主要优点是,当在FPGA设备上实现稀疏卷积计算时,显著放松了对乘法器(DSP单元)的资源需求。
  在FPGA上实现ABM-SpConv方案时,为了实现最大的效率和最高的吞吐量&#

(base) zhengyeyang@YuLab103:/mnt/public/zhengyeyang/TiRank/other_methods/cytocommunity/CytoCommunity$ conda env create -f environment_linux.yml /home/zhengyeyang/anaconda3/lib/python3.12/argparse.py:2006: FutureWarning: `remote_definition` is deprecated and will be removed in 25.9. Use `conda env create --file=URL` instead. action(self, namespace, argument_values, option_string) Channels: - pytorch - defaults - msys2 - bioconda - conda-forge Platform: linux-64 Collecting package metadata (repodata.json): done Solving environment: failed PackagesNotFoundError: The following packages are not available from current channels: - pytorch-sparse==0.6.15=py310_torch_1.11.0_cpu - pytorch-scatter==2.0.9=py310_torch_1.11.0_cpu - pytorch-cluster==1.6.0=py310_torch_1.11.0_cpu - pyg==2.1.0=py310_torch_1.11.0_cpu Current channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2 - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 - https://repo.anaconda.com/pkgs/main - https://repo.anaconda.com/pkgs/r To search for alternate channels that may provide the conda package you're looking for, navigate to https://anaconda.org and use the search bar at the top of the page.
03-16
<think>好的,我现在需要帮助用户解决在Conda环境中安装指定版本的PyTorch相关包的问题。用户提到了pytorch-sparse==0.6.15、pytorch-scatter==2.0.9、pytorch-cluster==1.6.0和pyg==2.1.0,同时需要兼容Python 3.10和PyTorch 1.11.0。首先,我应该回忆一下PyTorch和相关库的版本兼容性问题,以及如何通过Conda正确安装它们。 首先,用户提供的引用内容显示,不同的PyTorch版本需要对应特定的CUDA工具包和依赖库版本。例如,引用[3]中提到的环境包括torch 1.11.0+cu113,而对应的torch-sparse是0.6.13,这可能与用户所需的0.6.15不同。我需要确认这些库的版本是否与PyTorch 1.11.0兼容。 接下来,用户可能遇到的问题是找不到这些指定版本的包。这可能是因为在默认的Conda通道中这些版本不可用,或者需要从特定的渠道安装,比如PyTorch官方或PyG的渠道。我记得PyTorch Geometric(pyg)通常建议使用pip安装,但有时Conda可能没有最新的版本,或者需要添加他们的Conda频道。 步骤方面,首先应该创建一个新的Conda环境,指定Python 3.10,这样可以隔离环境,避免与其他项目冲突。然后安装PyTorch 1.11.0,需要确认CUDA版本是否匹配。用户可能需要根据他们的CUDA版本选择正确的PyTorch版本。例如,cu113对应CUDA 11.3,而cu102对应CUDA 10.2。 安装PyTorch之后,接下来是安装pytorch-sparse、pytorch-scatter、pytorch-cluster等库。这些库通常需要从PyTorch Geometric的渠道安装,或者通过pip从特定的wheel安装。例如,可以使用以下命令: conda install pytorch-sparse==0.6.15 -c pyg 或者如果Conda不可用,可能需要使用pip: pip install torch-sparse==0.6.15+pt111cu113 -f https://data.pyg.org/whl/torch-1.11.0+cu113.html 这里需要注意PyTorch版本(pt111)和CUDA版本(cu113)是否正确。用户需要根据他们的PyTorch和CUDA版本调整URL中的参数。 最后安装pyg==2.1.0,同样需要确保与其他库兼容。可能需要从PyG的渠道或通过pip安装。 在用户提供的引用中,引用[3]提到了一个兼容的环境配置,但版本略有不同。例如,torch-sparse是0.6.13,而用户需要0.6.15。需要检查PyG的官方文档或GitHub页面,确认这些版本是否兼容,或者是否存在已知问题。 可能的错误来源包括版本不匹配、缺少依赖项或安装源不正确。例如,如果用户安装了错误的CUDA版本的库,会导致无法找到包或运行时错误。此外,Python 3.10的兼容性也需要考虑,确保所有库都支持该版本。 总结步骤应该是: 1. 创建并激活Conda环境,指定Python 3.10。 2. 安装PyTorch 1.11.0及对应的CUDA工具包。 3. 使用正确的渠道(如pyg)安装sparse、scatter、cluster的指定版本。 4. 安装pyg==2.1.0。 5. 验证安装是否成功,检查版本和导入是否有错误。 还需要提醒用户根据他们的CUDA版本调整安装命令中的cuXXX部分,例如cu113对应CUDA 11.3,cu116对应CUDA 11.6等。如果用户没有GPU,可能需要安装CPU版本的PyTorch和相关库,这时CUDA版本应替换为cpu。 另外,用户可能已经安装了不兼容的版本,需要先卸载现有包,再重新安装指定版本。例如,如果之前用pip安装了某些包,可能需要用pip卸载,再通过Conda安装,反之亦然,避免混合使用导致冲突。 最后,建议用户参考PyTorch Geometric的官方安装指南,因为他们的文档通常会列出兼容的版本组合,并提供相应的安装命令。</think>### 分步解决方案 #### 1. 创建并激活Conda环境 ```bash conda create -n py310 python=3.10 conda activate py310 ``` #### 2. 安装PyTorch 1.11.0及CUDA工具包 根据CUDA版本选择对应命令: - **CUDA 11.3**(需NVIDIA显卡支持): ```bash conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch ``` - **仅CPU版本**(无GPU): ```bash conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cpuonly -c pytorch ``` #### 3. 安装PyTorch相关扩展库 通过PyG官方渠道安装指定版本: ```bash conda install pytorch-sparse==0.6.15 pytorch-scatter==2.0.9 pytorch-cluster==1.6.0 -c pyg ``` 若Conda渠道无响应,改用**pip安装**: ```bash pip install torch-sparse==0.6.15+pt111cu113 \ torch-scatter==2.0.9+pt111cu113 \ torch-cluster==1.6.0+pt111cu113 \ -f https://data.pyg.org/whl/torch-1.11.0+cu113.html ``` > **注意**:根据实际CUDA版本替换`cu113`(如`cu102`、`cpu`等) #### 4. 安装PyG 2.1.0 ```bash pip install torch-geometric==2.1.0 ``` #### 5. 验证安装 ```python import torch print(torch.__version__) # 应输出1.11.0 from torch_sparse import SparseTensor print(SparseTensor) # 应输出类定义 import torch_geometric print(torch_geometric.__version__) # 应输出2.1.0 ``` ### 关键点说明 - **版本匹配**:PyTorch扩展库(sparse/scatter/cluster)的版本号需包含PyTorch版本标识(如`pt111`)和CUDA标识(如`cu113`),否则会引发兼容性问题[^3]。 - **安装顺序**:必须先安装PyTorch,再安装其扩展库,最后安装PyG。 - **渠道优先级**:优先使用`-c pyg`指定PyG官方Conda渠道,若不可用则切换至pip安装。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值