【强化学习论文解读 2】 Theory and application to reward shaping

【强化学习论文解读 2】 Theory and application to reward shaping

1. 引言

本文介绍一篇1999年发表在ICML的文章:Policy invariance under reward transformations: Theory and application to reward shaping。论文的作者是大家非常熟悉的吴恩达(Andrew Ng)老师。

论文传送门:Policy invariance under reward transformations: Theory and application to reward shaping

论文的亮点是:给出了reward shaping(奖励塑造)的充分必要条件,即:对奖励做何种修改不会改变MDP(马尔科夫决策过程)的最优策略。

2. 论文解读

2.1 背景

在连续决策问题中,给定奖励函数和环境模型,那么最优策略是确定的。一个很自然的问题是:我们能够对奖励函数做怎样的修改能够保证最优策略是不变的呢? 因为一个好的奖励函数能够加快策略收敛速度,所以我们想知道我们能对它修改的“自由”是多少?

在utility theory领域(主要研究单步决策)中,有学者给出了对于utility function的相应问题的答案,那就是:对于没有不确定性的单步决策,utilities上的任何单调变换都使最优决策保持不变;对于有不确定性的单步决策,只有正线性变换才能保持最优决策不变。

在改变reward function的情况下,对于连续决策问题策略不变性还没有人研究。

这个问题是非常重要的,因为在强化学习问题中,我们常常为了加快收敛速度会设置一些“引导性”的奖励,如果这些奖励设置地不好,很可能会导致最优策略发生改变。

2.2 预备知识

在证明之前,我们需要些预备知识。首先来看符号定义。

Markov decision process (MDP) 记作 M = ( S , A , T , γ , R ) M=(S, A, T, \gamma, R) M=(S,A,T,γ,R)

其中: S S S 是有限状态集; A = { a 1 , … , a k } A=\left\{a_{1}, \ldots, a_{k}\right\} A={a1,,ak} 是动作集( k ≥ 2 k \geq 2 k2) ; T = { P s a ( ⋅ ) ∣ s ∈ S , a ∈ A } T=\left\{P_{s a}(\cdot) \mid s \in S, a \in A\right\} T={Psa()sS,aA} 是下一状态转移概率, P s a ( s ′ ) P_{s a}\left(s^{\prime}\right) Psa(s)是在状态 s s s下采取动作 a a a得到状态 s ′ s^{\prime} s的概率; γ ∈ ( 0 , 1 ] \gamma \in(0,1] γ(0,1]是折扣因子; R R R 代表奖励分布。

为了简化问题,作者将奖励 R R R都假定为确定性的,即为有界实值函数。将奖励函数 R R R写作: R ( s , a , s ′ ) R\left(s, a, s^{\prime}\right) R(s,a,s),即:映射关系为 S × A × S ↦ R S \times A \times S \mapsto \mathbb{R} S×A×SR

在一个MDP问题 M M M下,执行策略 π \pi π得到的价值函数函数记为: V M π V_{M}^{\pi} VMπ. V M π ( s ) = E [ r 1 + V_{M}^{\pi}(s)=\mathrm{E}\left[r_{1}+\right. VMπ(s)=E[r1+ γ r 2 + γ 2 r 3 + … ; π , s ] \left.\gamma r_{2}+\gamma^{2} r_{3}+\ldots ; \pi, s\right] γr2+γ2r3+;π,s], 代表其在状态 s s s下的价值。

Q函数(即动作价值函数)为:
在这里插入图片描述

对于MDP问题M而言,最优状态价值函数记作 V M ∗ ( s ) = sup ⁡ π V M π ( s ) V_{M}^{*}(s)=\sup _{\pi} V_{M}^{\pi}(s) VM(s)=supπVMπ(s)最优动作价值函数记作 Q M ∗ ( s , a ) = sup ⁡ π Q M π ( s , a ) . Q_{M}^{*}(s, a)=\sup _{\pi} Q_{M}^{\pi}(s, a) . QM(s,a)=supπQMπ(s,a). 最优策略 π M ∗ ( s ) = arg ⁡ max ⁡ a ∈ A Q M ∗ ( s , a ) . \pi_{M}^{*}(s)=\arg \max _{a \in A} Q_{M}^{*}(s, a) . πM(s)=argmaxaAQM(s,a). 当然,最优策略可能不唯一,只要所有的动作 a a a满足 arg ⁡ max ⁡ a ∈ A Q M ∗ ( s , a ) \arg \max _{a \in A} Q_{M}^{*}(s, a) argmaxaAQM(s,a)就是最优策略。后续为了推导公式的简便,可能会直接扔掉下标“M”

2.3 Reward shaping的充分必要条件

假设原MDP问题为: M = ( S , A , T , γ , R ) M=(S, A, T, \gamma, R) M=(S,A,T,γ,R),reward shaping后的MDP问题为: M ′ = ( S , A , T , γ , R ′ ) M^{\prime}=\left(S, A, T, \gamma, R^{\prime}\right) M=(S,A,T,γ,R),其中 R ′ = R + F R^{\prime}=R+F R=R+F F F F R R R一样,是个有界实值函数,称为shaping reward function,映射关系为 F : S × A × S ↦ R F: S \times A \times S \mapsto \mathbb{R} F:S×A×SR(后面证明可以知道,其实 F F F只是个关于状态 s s s和状态 s ′ s' s的函数)

F ( s , a , s ′ ) F\left(s, a, s^{\prime}\right) F(s,a,s)是我们比较喜欢动手脚的地方,比如:如果为了鼓励agent接近一个目标,那么就设置当状态 s ′ s^{\prime} s比状态 s s s更靠近目标时, F ( s , a , s ′ ) F\left(s, a, s^{\prime}\right) F(s,a,s)为一个正数,反之则为一个负数;再比如:如果为了鼓励agent在某个状态 S 0 S_0 S0下采取动作 a 1 a_1 a1,那么只要令 F ( s , a , s ′ ) F\left(s, a, s^{\prime}\right) F(s,a,s)在采取动作 a 1 a_1 a1时为一个正数,其他动作时为0即可。

首先,考虑一个环形状态转移情况,即: s 1 → s 2 → ⋯ → s n → s 1 → ⋯ s_{1} \rightarrow s_{2} \rightarrow \cdots \rightarrow s_{n} \rightarrow s_{1} \rightarrow \cdots s1s2sns1, 如果shaping reward F F F 产生了净收益 ( F ( s 1 , a 1 , s 2 ) + ⋯ + \left(F\left(s_{1}, a_{1}, s_{2}\right)+\cdots+\right. (F(s1,a1,s2)++ F ( s n − 1 , a n − 1 , s n ) + F ( s n , a n , s 1 ) > 0 ) \left.F\left(s_{n-1}, a_{n-1}, s_{n}\right)+F\left(s_{n}, a_{n}, s_{1}\right)>0\right) F(sn1,an1,sn)+F(sn,an,s1)>0),那么agent会被这个 F F F奖励“分心”,可能导致不断地“转圈刷分”。

基于这点观察,大致可以猜到 F F F应该要是个势能差的形式,即: F ( s , a , s ′ ) = Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=Φ(s)Φ(s),其中 Φ ( s ) \Phi(s) Φ(s)是状态 s s s的函数(即类似于物理学中的势能含义),这样才能避免“转圈刷分”的情况出现。当然 F ( s , a , s ′ ) = Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=Φ(s)Φ(s)只是针对折扣因子 γ = 1 \gamma=1 γ=1的情况;对于 γ < 1 \gamma<1 γ<1的情况 F ( s , a , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=γΦ(s)Φ(s),至于为什么是这个形式,就是通过理论推导得到的。

以下定理给出了shaping reward function F F F 在不改变最优策略情况下充分必要条件(红框部分是定理的充分性和必要性的转述),其中 s 0 s_0 s0表示吸收态,也就是强化学习中的终态:
在这里插入图片描述

充分性说明了,如果在给奖励函数 R R R添加了一个基于势能的函数 F ( s , a , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=γΦ(s)Φ(s),那么最优策略保持不变;必要性说明了,如果在没有状态转移 T T T和奖励 R R R的先验知识,那么想要不改变最优策略,我们只能选择基于势能的函数 F F F。(如果我们有非常丰富的状态转移 T T T和奖励 R R R的先验知识,那么可以选择其它种类的shaping function,不一定要是基于势能的形式

此定理重要的是 Φ ( s ) \Phi(s) Φ(s)可以作为人类专家知识的入口,只要 Φ ( s ) \Phi(s) Φ(s)选得好,那么能大幅加快强化学习的训练。

下面对充分性和必要性的证明做一个简单的论述,有一些细枝末节的地方没有展开,严谨论证请直接参考原论文。

充分性证明:

我们已知最优Q函数满足bellman方程:
在这里插入图片描述
通过简单的加减变换操作,得到:
在这里插入图片描述

不妨定义:
在这里插入图片描述
再把 F F F的定义式 F ( s , a , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=γΦ(s)Φ(s)代入变换后的方程,得到:

在这里插入图片描述

而此方程就是reward shaping后的MDP问题 M ′ M' M的bellman方程。 M ′ M' M的最优Q函数就是 Q M ′ ∗ ( s , a ) = Q ^ M ′ ( s , a ) = Q M ∗ ( s , a ) − Φ ( s ) Q_{M^{\prime}}^{*}(s, a)=\hat{Q}_{M^{\prime}}(s, a)=Q_{M}^{*}(s, a)-\Phi(s) QM(s,a)=Q^M(s,a)=QM(s,a)Φ(s)

那么 M ′ M^{\prime} M的最优策略 π M ′ ∗ ( s ) \pi_{M^{\prime}}^{*}(s) πM(s)为:

在这里插入图片描述
可以看到,由于 Φ ( s ) \Phi(s) Φ(s)仅是状态 s s s的函数,与动作无关,故 M ′ M^{\prime} M的最优策略与 M M M的最优策略完全一致,充分性证毕

必要性证明:

首先看一个引理:如果说reward shaping函数 F ( s , a , s ′ ) F(s,a,s') F(s,a,s)的值与动作有关,那么一定存在转移函数 T T T和奖励函数 R R R,使得在 M M M中的最优策略放在 M ′ M' M中不是最优。(这里只要举一个例子即可)

证明过程如下:
在这里插入图片描述

接着下面进一步地证明 F ( s , a , s ′ ) F(s,a,s') F(s,a,s)不仅与动作无关,而且 F ( s , a , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=γΦ(s)Φ(s)。如果 F ( s , a , s ′ ) F(s,a,s') F(s,a,s)不是这样,那么最优策略就会改变。(这部分证明,我感觉按照作者的证明思路, F ( s , a , s ′ ) = k ( γ Φ ( s ′ ) − Φ ( s ) ) F\left(s, a, s^{\prime}\right)=k(\gamma\Phi\left(s^{\prime}\right)-\Phi(s)) F(s,a,s)=k(γΦ(s)Φ(s))同样满足证明过程, k k k可以是任意实数,也许是作者想要强制保证 Φ ( s ) \Phi(s) Φ(s)前的系数为-1,这样把 k k k吸收到 Φ ( ⋅ ) \Phi(·) Φ()中,就得到了作者的式子)

证明的主要思路就是构造一个例子,即 F ( s , s ′ ) ≠ γ Φ ( s ′ ) − Φ ( s ) F\left(s, s^{\prime}\right) \neq \gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,s)=γΦ(s)Φ(s)时,必会存在在 M M M中的最优策略放在 M ′ M' M中不是最优。

证明过程如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 相关推论

根据定理1的充分性证明过程,可得推论:

在这里插入图片描述

推论说的是,如果奖励塑造的过程中,使用的是 F ( s , a , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) F\left(s, a, s^{\prime}\right)=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,a,s)=γΦ(s)Φ(s)的形式,去加在奖励函数上,那么是不会改变最优动作价值函数 Q M ′ ∗ ( s , a ) Q_{M^{\prime}}^{*}(s, a) QM(s,a)和最优状态价值函数 V M ′ ∗ ( s ) V_{M^{\prime}}^{*}(s) VM(s)。最优动作价值函数不改变是通过充分性的证明过程得到的,而最优状态价值函数不改变是因为有等式: V ∗ ( s ) = V^{*}(s)= V(s)= max ⁡ a ∈ A Q ∗ ( s , a ) \max _{a \in A} Q^{*}(s, a) maxaAQ(s,a)

对于此推论,作者做了两个备注

备注一:鲁棒性。即:不仅仅是对最优策略,对任意策略 π \pi π,推论2中的恒等式都是成立的。如果一个策略 π \pi π,在 M ′ M' M中接近最优了,那么此策略在 M M M中也会接近最优,这也就意味着基于势能的reward shaping还具备鲁棒性。

原文表述如下:
在这里插入图片描述

备注二:若奖励函数设为势能差,那么所有策略均最优。即:如果我们把奖励函数 R R R设为势能差的形式: R ( s , a , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) R\left(s, a, s^{\prime}\right)=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) R(s,a,s)=γΦ(s)Φ(s),那么显然这个奖励函数没有任何实质性的对动作的偏向,这就会导致不管什么策略,算出来都会是最优策略。

原文表述如下:

在这里插入图片描述

作者还说道:对于半马尔可夫决策过程(动作需要不同的时间去执行),可以令 F ( s , a , s ′ , τ ) = F\left(s, a, s^{\prime}, \tau\right)= F(s,a,s,τ)= e − β τ Φ ( s ′ ) − Φ ( s ) e^{-\beta \tau} \Phi\left(s^{\prime}\right)-\Phi(s) eβτΦ(s)Φ(s),其中 τ \tau τ是动作完成的时间, β \beta β是折扣率。

3. 总结

对于我们没有状态转移 T T T和奖励 R R R的先验知识的情况(这是我们model-free方法经常遇到的情况),那么想要通过改变奖励函数 R ( s , a , s ′ ) R(s,a,s') R(s,a,s)来加快强化学习收敛,只能令新的奖励函数为 R ′ ( s , a , s ′ ) = R ( s , a , s ′ ) + F ( s , s ′ ) R'(s,a,s')=R(s,a,s')+F(s,s') R(s,a,s)=R(s,a,s)+F(s,s),其中 F ( s , s ′ ) = γ Φ ( s ′ ) − Φ ( s ) F(s,s')=\gamma\Phi\left(s^{\prime}\right)-\Phi(s) F(s,s)=γΦ(s)Φ(s),而 Φ ( s ) \Phi(s) Φ(s)与状态有关的函数即可,这样才不会改变最优策略。

对于 Φ ( s ) \Phi(s) Φ(s)的构造,推荐使用基于距离的启发式(a distance-based heuristic),或者基于子目标的启发式(a subgoal-based heuristic)。

注:虽然原文写的是 F ( s , a , s ′ ) F(s,a,s') F(s,a,s),但是写成 F ( s , s ′ ) F(s,s') F(s,s)也是一样的,因为和动作 a a a无关。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值