量子信息-学习记录14

ch.14. 谐振子量子计算机(续)

qubits的物理实现

  对于一个逻辑单qubit而言,其基矢张成一个二维希尔伯特空间: H 2 = s p a n { ∣ 0 ⟩ L ,   ∣ 1 ⟩ L } \mathcal{H}_2=span\{|0\rang_L,\ |1\rang_L\} H2=span{0L, 1L}

  其中,下标L表示“逻辑的(logical)”,逻辑上的基矢,可以由无限多种简单谐振子来表示,例如:
  1、 ∣ 0 ⟩ L = ∣ 0 ⟩ |0\rang_L=|0\rang 0L=0 ∣ 1 ⟩ L = ∣ 1 ⟩ |1\rang_L=|1\rang 1L=1 E 1 = 3 2 ℏ ω E_1=\dfrac{3}{2}\hbar\omega E1=23ω
  2、 ∣ 0 ⟩ L = ∣ n ⟩ |0\rang_L=|n\rang 0L=n ∣ 1 ⟩ L = ∣ n + 1 ⟩ |1\rang_L=|n+1\rang 1L=n+1 E n + 1 = ( n + 3 2 ) ℏ ω E_{n+1}=\left(n+\dfrac{3}{2}\right)\hbar\omega En+1=(n+23)ω
  3、 ∣ 0 ⟩ L = ∣ n ⟩ |0\rang_L=|n\rang 0L=n ∣ 1 ⟩ L = ∣ m ⟩ |1\rang_L=|m\rang 1L=m n ≠ m n\neq m n=m m > n + 1 m>n+1 m>n+1 E m = ( m + 3 2 ) ℏ ω E_m=\left(m+\dfrac{3}{2}\right)\hbar\omega Em=(m+23)ω

  尽管有无限多种表示的方法,但每一种表示的方法,所带来的能量消耗都是不同的。因此,在实践中, ∣ 0 ⟩ L = ∣ 0 ⟩ |0\rang_L=|0\rang 0L=0 ∣ 1 ⟩ L = ∣ 1 ⟩ |1\rang_L=|1\rang 1L=1是最佳选择(从能量消耗的角度来讲)

  而对于两个qubit而言,则可以由下述等方式表示:
  1、 ∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 1 ⟩ |01\rang_L=|1\rang 01L=1 ∣ 10 ⟩ L = ∣ 2 ⟩ |10\rang_L=|2\rang 10L=2 ∣ 11 ⟩ L = ∣ 3 ⟩ |11\rang_L=|3\rang 11L=3
  2、 ∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 2 ⟩ |01\rang_L=|2\rang 01L=2 ∣ 10 ⟩ L = ∣ 4 ⟩ |10\rang_L=|4\rang 10L=4 ∣ 11 ⟩ L = ∣ 1 ⟩ |11\rang_L=|1\rang 11L=1
  3、 ∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 2 ⟩ |01\rang_L=|2\rang 01L=2 ∣ 10 ⟩ L = ∣ 4 ⟩ + ∣ 1 ⟩ 2 |10\rang_L=\dfrac{|4\rang+|1\rang}{\sqrt 2} 10L=2 4+1 ∣ 11 ⟩ L = ∣ 4 ⟩ − ∣ 1 ⟩ 2 |11\rang_L=\dfrac{|4\rang-|1\rang}{\sqrt 2} 11L=2 41
  4、 ∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 4 ⟩ + ∣ 1 ⟩ 2 |01\rang_L=\dfrac{|4\rang+|1\rang}{\sqrt 2} 01L=2 4+1 ∣ 10 ⟩ L = ∣ 4 ⟩ − ∣ 1 ⟩ 2 |10\rang_L=\dfrac{|4\rang-|1\rang}{\sqrt 2} 10L=2 41 ∣ 11 ⟩ L = ∣ 2 ⟩ |11\rang_L=|2\rang 11L=2

  对于n个qubit而言,基矢张成维度为 2 n 2^n 2n的希尔伯特空间,可以由下述形式表示:

∣ 0 ⋯ 0 ⟩ L = ∣ 0 ⟩ |0\cdots0\rang_L=|0\rang 00L=0 ∣ 0 ⋯ 1 ⟩ L = ∣ 1 ⟩ |0\cdots 1\rang_L=|1\rang 01L=1 ∣ 00 ⋯ 10 ⟩ L = ∣ 2 ⟩ |00\cdots 10\rang_L=|2\rang 0010L=2 ⋯ \cdots ∣ 11 ⋯ 1 ⟩ L = ∣ 2 n − 1 ⟩ |11\cdots 1\rang_L=|2^n-1\rang 111L=2n1

  但这样带来的能量消耗为 E n = ( 2 n + 1 2 ) ℏ ω E_n=\left(2^n+\dfrac{1}{2}\right)\hbar\omega En=(2n+21)ω,这个能量显然不是理想的。如果考虑对每一位qubit都单独使用 ∣ 0 ⟩ L ,   ∣ 1 ⟩ L |0\rang_L,\ |1\rang_L 0L, 1L进行表示,则可以将能量消耗减小为 n ⋅ 3 2 ℏ ω n\cdot\dfrac{3}{2}\hbar\omega n23ω,这个量级 O ( n ) O(n) O(n)明显远小于 O ( 2 n ) O(2^n) O(2n)

单qubit量子门的物理实现

  对于一个单qubit, ∣ 0 ⟩ L = ∣ 0 ⟩ |0\rang_L=|0\rang 0L=0 ∣ 1 ⟩ L = ∣ 1 ⟩ |1\rang_L=|1\rang 1L=1

( α β ) = ∣ ψ ( 0 ) ⟩ L = α ∣ 0 ⟩ L + β ∣ 1 ⟩ L \left(\begin{matrix}\alpha\\\beta\end{matrix}\right)=|\psi(0)\rang_L=\alpha|0\rang_L+\beta|1\rang_L (αβ)=ψ(0)L=α0L+β1L

  其中, ∣ α ∣ 2 + ∣ β ∣ 2 = 1 |\alpha|^2+|\beta|^2=1 α2+β2=1KaTeX parse error: Undefined control sequence: \C at position 19: …pha,\ \beta\in \̲C̲

  而 ∣ ψ ( t ) ⟩ L = e − i ω t 2 ( α ∣ 0 ⟩ + β e − i ω t ∣ 1 ⟩ ) |\psi(t)\rang_L=e^{-\frac{i\omega t}{2}}(\alpha|0\rang+\beta e^{-i\omega t}|1\rang) ψ(t)L=e2iωt(α0+βeiωt1)

  忽略全局相因子:

∣ ψ ( t ) ⟩ L = α ∣ 0 ⟩ + β e − i ω t ∣ 1 ⟩ = ( 1 0 0 e − i ω t ) ( α β ) ∣ ψ ( 0 ) ⟩ L \begin{aligned}|\psi(t)\rang_L&=\alpha|0\rang+\beta e^{-i\omega t}|1\rang\\ &=\left(\begin{matrix}1 & 0\\0 & e^{-i\omega t}\end{matrix}\right)\left(\begin{matrix}\alpha \\ \beta\end{matrix}\right)|\psi(0)\rang_L\end{aligned} ψ(t)L=α0+βeiωt1=(100eiωt)(αβ)ψ(0)L

  酉矩阵为:

U ( t ) = ( 1 0 0 e − i ω t ) U(t)=\left(\begin{matrix}1 & 0\\ 0 & e^{-i\omega t}\end{matrix}\right) U(t)=(100eiωt)

  当 t = 3 π 2 ω t=\dfrac{3\pi}{2\omega} t=2ω3π时, U ( t ) = ( 1 0 0 i ) = S U(t)=\left(\begin{matrix}1 & 0\\ 0 & i\end{matrix}\right)=S U(t)=(100i)=S

  当 t = 7 π 4 ω t=\dfrac{7\pi}{4\omega} t=4ω7π时, U ( t ) = ( 1 0 0 e i π / 4 ) = T U(t)=\left(\begin{matrix}1 & 0\\ 0 & e^{i\pi/4}\end{matrix}\right)=T U(t)=(100eiπ/4)=T

泡利X门的实现

∣ 0 ⟩ L = ∣ 0 ⟩ + ∣ 1 ⟩ 2 ,   ∣ 1 ⟩ L = ∣ 0 ⟩ − ∣ 1 ⟩ 2 |0\rang_L=\dfrac{|0\rang+|1\rang}{\sqrt 2},\ |1\rang_L=\dfrac{|0\rang-|1\rang}{\sqrt 2} 0L=2 0+1, 1L=2 01

∣ ψ ( 0 ) ⟩ L = α ∣ 0 ⟩ + ∣ 1 ⟩ 2 + β ∣ 0 ⟩ − ∣ 1 ⟩ 2 = α + β 2 ∣ 0 ⟩ + α − β 2 ∣ 1 ⟩ = ( α β ) L \begin{aligned}|\psi(0)\rang_L&=\alpha\dfrac{|0\rang+|1\rang}{\sqrt 2}+\beta\dfrac{|0\rang-|1\rang}{\sqrt 2}\\ &=\dfrac{\alpha+\beta}{\sqrt 2}|0\rang+\dfrac{\alpha-\beta}{\sqrt 2}|1\rang\\ &=\left(\begin{matrix}\alpha\\\beta\end{matrix}\right)_L\end{aligned} ψ(0)L=α2 0+1+β2 01=2 α+β0+2 αβ1=(αβ)L

∣ ψ ( t ) ⟩ L = ( α + β 2 ∣ 0 ⟩ + α − β 2 e − i ω t ∣ 1 ⟩ ) = ( α + β 2 × ∣ 0 ⟩ L + ∣ 1 ⟩ L 2 + α − β 2 e − i ω t ∣ 0 ⟩ L − ∣ 1 ⟩ L 2 ) = α + β 2 ( ∣ 0 ⟩ L + ∣ 1 ⟩ L ) + α − β 2 e − i ω t ( ∣ 0 ⟩ L − ∣ 1 ⟩ L ) = ( α + β 2 + α − β 2 e − i ω t α + β 2 − α − β 2 e − i ω t ) L = ( 1 + e − i ω t 2 α + 1 − e − i ω t 2 β 1 − e − i ω t 2 α + 1 + e − i ω t 2 β ) L = ( 1 + e − i ω t 2 1 − e − i ω t 2 1 − e − i ω t 2 1 + e − i ω t 2 ) ( α β ) L = U L ( t ) ∣ ψ ( 0 ) ⟩ L \begin{aligned}|\psi(t)\rang_L&=\left(\dfrac{\alpha+\beta}{\sqrt 2}|0\rang+\dfrac{\alpha-\beta}{\sqrt 2}e^{-i\omega t}|1\rang\right)\\ &=\left(\dfrac{\alpha+\beta}{\sqrt 2}\times \dfrac{|0\rang_L+|1\rang_L}{\sqrt 2}+\dfrac{\alpha-\beta}{\sqrt 2}e^{-i\omega t}\dfrac{|0\rang_L-|1\rang_L}{\sqrt 2}\right)\\ &=\dfrac{\alpha+\beta}{2}(|0\rang_L+|1\rang_L)+\dfrac{\alpha-\beta}{2}e^{-i\omega t}(|0\rang_L-|1\rang_L)\\ &=\left(\begin{matrix}\dfrac{\alpha+\beta}{2}+\dfrac{\alpha-\beta}{2}e^{-i\omega t}\\ \dfrac{\alpha+\beta}{2}-\dfrac{\alpha-\beta}{2}e^{-i\omega t}\end{matrix}\right)_L\\ &=\left(\begin{matrix}\dfrac{1+e^{-i\omega t}}{2}\alpha+\dfrac{1-e^{-i\omega t}}{2}\beta\\\dfrac{1-e^{-i\omega t}}{2}\alpha+\dfrac{1+e^{-i\omega t}}{2}\beta\end{matrix}\right)_L\\ &=\left(\begin{matrix}\dfrac{1+e^{-i\omega t}}{2} & \dfrac{1-e^{-i\omega t}}{2}\\\dfrac{1-e^{-i\omega t}}{2} & \dfrac{1+e^{-i\omega t}}{2}\end{matrix}\right)\left(\begin{matrix}\alpha\\\beta\end{matrix}\right)_L\\ &=U_L(t)|\psi(0)\rang_L\end{aligned} ψ(t)L=(2 α+β0+2 αβeiωt1)=(2 α+β×2 0L+1L+2 αβeiωt2 0L1L)=2α+β(0L+1L)+2αβeiωt(0L1L)=2α+β+2αβeiωt2α+β2αβeiωtL=21+eiωtα+21eiωtβ21eiωtα+21+eiωtβL=21+eiωt21eiωt21eiωt21+eiωt(αβ)L=UL(t)ψ(0)L

  其中:

U L ( t ) = ( 1 + e − i ω t 2 1 − e − i ω t 2 1 − e − i ω t 2 1 + e − i ω t 2 ) L U_L(t)=\left(\begin{matrix}\dfrac{1+e^{-i\omega t}}{2} & \dfrac{1-e^{-i\omega t}}{2}\\\dfrac{1-e^{-i\omega t}}{2} & \dfrac{1+e^{-i\omega t}}{2}\end{matrix}\right)_L UL(t)=21+eiωt21eiωt21eiωt21+eiωtL

  当 e − i ω t = − 1 e^{-i\omega t}=-1 eiωt=1时:

U L ( t ) = ( 0 1 1 0 ) U_L(t)=\left(\begin{matrix}0 & 1\\ 1 & 0\end{matrix}\right) UL(t)=(0110)

双qubit量子门的物理实现

∣ n ( t ) ⟩ = e − i ω t 2 e − i ω t n ∣ n ⟩ |n(t)\rang=e^{-\frac{i\omega t}{2}}e^{-i\omega tn}|n\rang n(t)=e2iωteiωtnn

  当 t = π ω t=\dfrac{\pi}{\omega} t=ωπ时, ∣ n ( t ) ⟩ = e − i ω 2 π ω e − i ω π ω n ∣ n ⟩ = − i ( − 1 ) n ∣ n ⟩ |n(t)\rang=e^{-i\frac{\omega}{2}\frac{\pi}{\omega}}e^{-i\omega\frac{\pi}{\omega}n}|n\rang=-i(-1)^n|n\rang n(t)=ei2ωωπeiωωπnn=i(1)nn

CNOT门的物理实现

∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 2 ⟩ |01\rang_L=|2\rang 01L=2 ∣ 10 ⟩ L = ∣ 4 ⟩ + ∣ 1 ⟩ 2 |10\rang_L=\dfrac{|4\rang+|1\rang}{\sqrt 2} 10L=2 4+1 ∣ 11 ⟩ L = ∣ 4 ⟩ − ∣ 1 ⟩ 2 |11\rang_L=\dfrac{|4\rang-|1\rang}{\sqrt 2} 11L=2 41

  当 t = π ω t=\dfrac{\pi}{\omega} t=ωπ时, ( − 1 ) 0 ∣ 0 ⟩ = ∣ 00 ⟩ L (-1)^0|0\rang=|00\rang_L (1)00=00L ( − 1 ) 2 ∣ 2 ⟩ = ∣ 01 ⟩ L (-1)^2|2\rang=|01\rang_L (1)22=01L ( − 1 ) 4 ∣ 4 ⟩ + ( − 1 ) 1 ∣ 1 ⟩ 2 = ∣ 11 ⟩ L \dfrac{(-1)^4|4\rang+(-1)^1|1\rang}{\sqrt 2}=|11\rang_L 2 (1)44+(1)11=11L ( − 1 ) 4 ∣ 4 ⟩ − ( − 1 ) 1 ∣ 1 ⟩ 2 = ∣ 10 ⟩ L \dfrac{(-1)^4|4\rang-(-1)^1|1\rang}{\sqrt 2}=|10\rang_L 2 (1)44(1)11=10L

CZ门(控制-泡利-Z门)的物理实现

∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 2 ⟩ |01\rang_L=|2\rang 01L=2 ∣ 10 ⟩ L = ∣ 4 ⟩ |10\rang_L=|4\rang 10L=4 ∣ 11 ⟩ L = ∣ 1 ⟩ |11\rang_L=|1\rang 11L=1

  当 t = π ω t=\dfrac{\pi}{\omega} t=ωπ时, ∣ 0 ⟩ = ∣ 00 ⟩ L |0\rang=|00\rang_L 0=00L ∣ 2 ⟩ = ∣ 01 ⟩ L |2\rang=|01\rang_L 2=01L ∣ 4 ⟩ = ∣ 10 ⟩ L |4\rang=|10\rang_L 4=10L − ∣ 1 ⟩ = − ∣ 11 ⟩ L -|1\rang=-|11\rang_L 1=11L

SWAP门的物理实现

∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 01 ⟩ L = ∣ 4 ⟩ + ∣ 1 ⟩ 2 |01\rang_L=\dfrac{|4\rang+|1\rang}{\sqrt 2} 01L=2 4+1 ∣ 10 ⟩ L = ∣ 4 ⟩ − ∣ 1 ⟩ 2 |10\rang_L=\dfrac{|4\rang-|1\rang}{\sqrt 2} 10L=2 41 ∣ 11 ⟩ L = ∣ 2 ⟩ |11\rang_L=|2\rang 11L=2

  当 t = π ω t=\dfrac{\pi}{\omega} t=ωπ时, ∣ 00 ⟩ L = ∣ 0 ⟩ |00\rang_L=|0\rang 00L=0 ∣ 10 ⟩ L = ∣ 4 ⟩ + ∣ 1 ⟩ 2 |10\rang_L=\dfrac{|4\rang+|1\rang}{\sqrt 2} 10L=2 4+1 ∣ 01 ⟩ L = ∣ 4 ⟩ − ∣ 1 ⟩ 2 |01\rang_L=\dfrac{|4\rang-|1\rang}{\sqrt 2} 01L=2 41 ∣ 11 ⟩ L = ∣ 2 ⟩ |11\rang_L=|2\rang 11L=2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值