【AI前沿】Manus:当多 Agent 协作成为现实

在这里插入图片描述

这几天,朋友圈和社群里都被一款名叫 Manus 的 AI Agent 刷屏了。号称能够独立思考、规划并执行复杂任务,并最终交付完整结果。听起来似乎要颠覆我们对传统 ChatGPT 那种“你问我答”的模式。到底它是什么?能做什么?会对行业带来什么冲击?我也跟不少朋友交流了一番,并结合之前在其他多 Agent 产品上的体验,整理出以下一些思考。

一、Operator vs Manus:同样是 AI Agent,为何关注度不同?

其实在 Manus 之前,OpenAI 也推出过类似的产品 Operator。这款 Agent 也能在浏览器中独立完成餐厅预订、购物下单、订票、外卖等任务,并支持可视化监控和随时接管。然而,Operator 并未在市场上激起太大波澜,究其原因在于:
1. 单一模型驱动
Operator 更多还是依赖单一大模型来做任务决策,难免遇到一些关键环节需要用户进行人工干预。比如复杂场景下,Agent 很难“一次搞定”,用户就会觉得既然还是得自己插手,不如直接动手更快。
2. 工具调用框架较为简单
Operator 在本质上还是对现有工具的封装,如果对用户的需求或执行场景稍有偏差,就需要额外的人为指令或脚本介入。

Manus 的出现,似乎带来了更彻底的解法:它强调多模型协作,采用“多重签名系统”来降低单点决策风险,官方 Demo 里演示的执行过程更为流畅。多模态的能力也让它可以处理更广泛的需求。尽管这还不至于算“革命性”的突破,但也足以让人眼前一亮。

二、Multi-Agent:从“单打独斗”到“协同作战”

Manus 最引人注目的地方,在于它并非让同一个大模型从头包办所有工作,而是把任务拆分成计划-执行-检查-行动的多个环节,再由不同的大模型或 Agent 分工合作。官方将其称为“多重签名系统”,其实就是多模型对决策进行交叉验证,降低错误概率,提高执行效率。

为什么要多 Agent?
1. 专注度
每个 Agent 都可以聚焦于自己擅长的领域:搜索、代码生成、数据分析、自动化操作等,不必一个模型通吃所有任务。
2. 容错率
多个 Agent 共同决策,若有某一步出现偏差,其他 Agent 可以提出修正或替代方案。
3. 执行效率
在部分场景下,Agent 还能并行处理任务,真正发挥“人多力量大”的效果。

三、“Less Structure, More Intelligence” 的理念

从官方和用户的反馈来看,Manus 另一大特色在于**“Less Structure, More Intelligence”**。这意味着他们希望减少人为对 AI 的流程性约束,让模型自行决定如何使用工具,从而更充分地发挥其潜能。
• 好处:大模型能更自由地“发挥创意”,不被固定流程或过多限制绑死。
• 挑战:对模型的依赖性更高,需要多模型间配合顺畅,也要承担一定程度的不可控风险。

官方 Demo 中,Manus 的大模型甚至会“自主学习”如何使用浏览器快捷键,以加速信息获取,这种主动探索的能力的确让人印象深刻。不过,也得承认,这类高自由度的设计更依赖底层模型的“智力”与算力。

四、Manus 在 Web3 / DeFi 场景的潜力与难题

不少人关心 Manus 或类似多 Agent 产品能否应用到 Web3,尤其是去中心化金融(DeFi)场景。想象一下,Agent 不仅能帮你找餐厅,还能自动发现链上交易机会、执行套利策略,是不是很酷?但现实并没有那么简单。
1. 实时性要求极高
在链上交易中,行情瞬息万变,套利机会往往在一秒之内就会消失。即便是多 Agent 协作,也需要高速的数据采集与决策机制(Oracle 层 Agent + 决策层 Agent + 执行层 Agent),任何延迟或数据传输瓶颈都可能错失良机。
2. 多模态大模型的瓶颈
要实现真正的链上自动化操作,Agent 必须接入实时数据源,并保证执行流程安全可控。链上状态频繁更新,如何让大模型进行快速反馈、风险评估与执行,还需要大量工程化打磨。
3. 金融合规与安全
DeFi 交易本身就有安全和合规方面的挑战,Agent 一旦拥有“操作资金”的权限,可能会引发一系列风控问题,必须引入更完善的审计、监控和回滚机制。

因此,Manus 或其他多 Agent 产品在 DeFi 上的应用目前依旧停留在“启迪思路”阶段,要想落地,需要整合多层次技术与机制。不过,如果将多重签名系统和多 Agent 协作理念带到链上,确实能帮助 DeFi 产品构建更稳健的决策与执行框架,这是值得期待的方向。

五、从“朋友圈焦虑”到“2025 年或成 Agent 爆发元年”

在传统 Web2 场景里,Manus 这样的多 Agent 产品无疑会引发部分从业者的焦虑:很多重复性高、依赖信息处理和执行的白领岗位,可能会被这类自动化系统替代。不过,AI 工具的出现往往并非只带来负面冲击,也可能催生出更多新型岗位,比如对 Agent 的管理、训练和监督等。

关于 2025 年是否会成为 Agent 爆发的元年,我认为可能性很高:
• 大模型正以惊人的速度迭代,越来越多开发者与创业者在探索如何用多 Agent 协同完成复杂任务;
• 用户也开始接受“让 AI 自己做事”这一新范式,尤其在高强度信息处理领域,AI 的确效率更高。

六、对 Manus 的进一步观察

从官方公布的信息和 Demo 来看,Manus 给人留下的印象包括:
1. 强大的多模态协作能力
AI 不再只是和文本打交道,而是能操作浏览器、执行代码,甚至可在云端电脑中自如切换任务。
2. 高昂的 Token 消耗
多 Agent 协同势必带来更频繁的大模型调用。这对成本控制提出挑战,也决定了这类产品能否大规模推广。
3. AHPU(Agentic Hours Per User)新指标
Manus 团队提出用“Agentic Hours Per User”来衡量用户使用代理的时长,与传统互联网产品的“活跃时长”概念相对。未来,我们或许要重新思考如何衡量一个 AI Agent 产品的价值。
4. 从“老板”角度的思维转变
如果把 Agent 当成实习生,你就需要给它提供充分的资源和“成长空间”,并用最少的人工干预去提升它的自主决策能力。这对管理者本身提出了更高要求。

结语

Manus 的出现,再次证明多 Agent 协作是大模型时代的热门趋势。它通过“Less Structure, More Intelligence”的思路,为我们展示了更具潜力的自动化执行场景,也为 Web3 / DeFi 乃至更多领域带来了新的想象空间。

当然,这一切仍处于早期阶段。要真正实现“让 AI 做大事”,还需要在实时数据获取、容错机制、执行安全性等方面持续探索。也许若干年后,我们回头看今天的 Manus,会发现它只是多 Agent 进化史中的一个里程碑,真正的爆发还在后面。但不管怎样,这扇门已经打开。

如果你也对多 Agent 协作充满好奇,不妨关注一下 Manus,或者等待后续更多玩家涌现。毕竟,2025 年可能真的会是“Agent 爆发的元年”。当“AI 实习生”遍地开花,你准备好当一个合格的“老板”了吗?

延伸阅读

Manus实测:全球首款通用AI Agent工作方式拆解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿呆591

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值