Ubuntu18.04+Anaconda搭建深度学习环境

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_42262612/article/details/93136452

安装Ubuntu18.04及相关

Ubuntu18.04推荐使用rufus工具安装,相关教程

设置磁盘分区

安装Ubuntu的时候,选择自定义磁盘分区,我的主机配置是512SSD加1T机械,
efi : 装在SSD,要求大于32Mb,设置为50Mb
swap交换空间 :和内存一样大小,32Gb,装在SSD
/boot :装在SSD,500Mb
/ :根目录,SSD剩下的空间都给它
/home :机械硬盘所有的空间都给它

更换阿里源

软件和更新里“下载自”选择 https://mirrors.aliyun.com/ubuntu
然后,终端命令行输入,

sudo apt-get update
sudo apt-get upgrade

安装显卡驱动

首先添加ppa源,

sudo add-apt-repositoryppa:graphics-drivers/ppa
sudo apt-get update

接下来,打开软件和更新,在顶栏附加驱动里可以选择适合的驱动并安装,我的显卡是2080Ti,所以装的是最新的NVIDIA-418。
安装好以后重启

sudo reboot

终端输入,可以检验是否安装成功

nvidia-smi

安装CUDA10

CUDA官网下载,选择Linux&x86_64&Ubuntu&1804&runfile(local)
安装,在run文件所在路径,终端输入,

chmod +x cuda_10.0.130_410.48_linux.run  #增加执行权限
sudo sh cuda_10.0.130_410.48_linux.run   #安装

因为之前驱动已经独立安装过了,所以当询问是否安装驱动时,选择no
在这里插入图片描述
设置环境变量

cd ~ #打开/home目录
sudo gedit ./bashrc

在最后加上,

export PATH=/usr/local/cuda-10.0/bin:$PATH  
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH

应用,

source ~/.bashrc

验证CUDA10是否安装成功

cd /usr/local/cuda/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery

安装cudNN

官网,注册登录,然后选择需要的版本进行下载
下载完成后解压并进入文件夹,安装cudNN即把文件复制到cuda文件夹

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

查看cudNN版本

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

安装Anaconda及配置环境

管理虚拟环境的方法有virtualenv,pipenv以及Anaconda。6月15日Anaconda清华源镜像有可以用了,在此推荐Anaconda,很多包通过conda install很方便。
官网下载速度很慢,到清华源选择版本下载,运行下载的sh文件

bash Anacona*

在是否设置环境变量处,选yes,若选了no,则需要装好后手动设置环境变量

cd ~
sudo gedit .bashrc

末尾加上

export PATH=/home/lionheart/anaconda3/bin:$PATH

安装成功后,终端前面会有个base,
前面有个(base)

添加清华源

直接conda install访问的是anaconda官方源,速度很慢,需要添加清华镜像

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes

搭建环境

常用命令如下,

# 创建一个名为tensorflow的虚拟环境
conda create -n tensorflow

# 创建指定Python版本的虚拟环境
conda create -n tensorflow python=3.6

# 完整复制一个环境
conda create -n test -clone tensorflow

# 进入虚拟环境
source activate tensorflow

# 退出虚拟环境
source deactivate

#查看当前存在的环境
conda info --envs

#删除环境
conda remove -n tensorflow --all

进入创建的名为tensorflow的环境中,安装所需要的库

conda install tensorflow
conda install tensorflow-gpu
conda install jupyter #jupyter notebook是个ipython调试器
conda install spyder  #类似matlab的pythonIDE

查看安装库所需要的依赖,如安装tensorflow-gpu(一般会自动安装依赖)

conda info tensorflow-gpu=1.2.1

安装指定版本的库

conda install *package=*version 
展开阅读全文

没有更多推荐了,返回首页