超越yolo系列的RT-DETR目标检测原理与简介

目录

简介

RT-DETR的核心创新

高效的混合编码器

IoU-aware查询选择

RT-DETR的实际应用

性能评估

代码和使用案例

不同模型性能对比

参考论文:https://arxiv.org/abs/2304.08069

github相关链接:https://github.com/lyuwenyu/RT-DETR


简介

T-DETR是第一个实时端到端目标检测器。具体而言,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来高效处理多尺度特征,并提出了IoU感知的查询选择机制,以优化解码器查询的初始化。此外,RT-DETR支持通过使用不同的解码器层来灵活调整推理速度,而不需要重新训练,这有助于实时目标检测器的实际应用。RT-DETR-L在COCO val2017上实现了53.0%的AP,在T4 GPU上实现了114FPS,RT-DETR-X实现了54.8%的AP和74FPS,在速度和精度方面都优于相同规模的所有YOLO检测器。RT-DETR-R50实现了53.1%的AP和108FPS,RT-DETR-R101实现了54.3%的AP和74FPS,在精度上超过了全部使用相同骨干网络的DETR检测器。 

RT-DETR的核心创新

RT-DETR采用了多尺度的Transformer Encoder(MSE),这是其设计的核心。它能够处理不同尺度的特征,实现了特征间有效的信息交互和融合,这对于提升模型的检测精度至关重要。RT-DETR通过这种方式优化了传统DETR模型中的特征处理方法,显著提高了处理速度和精度.

高效的混合编码器

RT-DETR采用了高效的混合编码器设计,这一设计包括两个主要部分:基于注意力的尺度内特征交互(AIFI)和基于CNN的跨尺度特征融合模块(CCFM)。这种创新的结构设计使得RT-DETR能够在维持高精度的同时,显著提升处理速度​​。

IoU-aware查询选择

另一个关键的创新是IoU-aware查询选择机制。这一机制能够在训练期间对高IoU的特征产生高分类分数,对低IoU的特征产生低分类分数,从而优化模型的检测性能。这种方法改进了传统DETR中的查询选择方式,提高了预测框的准确性​​​​。

RT-DETR的实际应用

性能评估

在性能方面,RT-DETR展示了卓越的结果。例如,RT-DETR-L在COCO val2017数据集上达到了53.0%的AP(平均精度),同时在T4 GPU上实现了114 FPS(每秒帧数),这证明了其在实时目标检测领域的强大性能【8†source】。

代码和使用案例

RT-DETR的官方GitHub项目提供了详细的代码和使用说明,方便研究人员和开发者进行实验和应用。这个项目不仅包括代码实现,还有关于如何使用和调整RT-DETR模型的详细指南【5†source】。

不同模型性能对比

ModelEpochInput shapeDatasetAP^valAP^val_50Params(M)FLOPs(G)T4 TensorRT FP16(FPS)
RT-DETR-R186x640COCO46.563.82060217
RT-DETR-R346x640COCO48.966.83192161
RT-DETR-R50-m6x640COCO51.369.636100145
RT-DETR-R506x640COCO53.171.342136108
RT-DETR-R1016x640COCO54.372.77625974
RT-DETR-HGNetv2-L6x640COCO53.071.632110114
RT-DETR-HGNetv2-X6x640COCO54.873.16723474
RT-DETR-R185x640COCO + Objects36549.266.62060217
RT-DETR-R502x640COCO + Objects36555.373.442136108
RT-DETR-R1012x640COCO + Objects36556.274.67625974

参考论文:https://arxiv.org/abs/2304.08069

github相关链接:https://github.com/lyuwenyu/RT-DETR

03-08
### RTDETR 技术概述 RTDETR (Real-Time Detection Transformer) 是一种专为实时目标检测设计的高效架构。该方法融合了Transformer的强大建模能力卷积神经网络(CNN)的优势,在保持高精度的同时实现了极高的推理速度[^1]。 #### 架构特点 - **轻量化骨干网**:采用优化后的EfficientNet作为特征提取器,通过减少计算量和参数数量来提高运行效率。 - **多尺度特征聚合机制**:引入FPN(Feature Pyramid Network),使得不同层次的信息能够更好地融合在一起,增强了模型对于大小物体的识别效果。 - **解耦头结构**:将分类和回归任务分离处理,降低了训练难度并提升了最终性能表现。 ```python from rt detr import build_model model = build_model( backbone='efficientnet_b0', num_classes=80, pretrained=True ) ``` #### 安装依赖库 为了顺利部署RTDETR项目,建议先安装所需的Python包: ```bash pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 此命令会从清华大学镜像源下载必要的软件包,加快安装过程[^2]。 #### 应用实例展示 假设已经完成数据预处理工作,则可以直接调用`infer_image()`函数来进行单张图片的目标检测预测,并利用SAHI框架中的`visualize_object_predictions()`工具直观呈现结果。 ```python import cv2 from sahi.utils.file import save_json from sahi.slicing import slice_image from sahi.predict import get_sliced_prediction, visualize_object_predictions image_path = 'path/to/your/image.jpg' result = model.infer_image(image_path) visualization_result = visualize_object_predictions( image=cv2.imread(image_path), object_prediction_list=result["object_prediction_list"], output_dir="output/", file_name="prediction" ) ``` 上述代码片段展示了如何加载待测图像文件并通过已训练好的RTDETR模型获取其上的对象位置信息;随后借助于SAHI提供的绘图接口保存带有标注框的结果图至指定目录下[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

E寻数据

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值