Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video(2019.10)

本文提出一种无监督学习方法,从单目视频中估计尺度一致的深度和自运动,解决了动态物体和遮挡问题,引入几何一致性损失和自发现mask,实现连续图像间几何一致的深度估计。

 

摘要

    最近CNN网络可以从未标注单目视频中学习深度和位姿估计,但由于不确定的运动物体导致效果受限,这些运动物体违反了几何图像重建固定场景下的假设,由于没有足够的约束导致在不同实例中网络输出尺度不一致的结果。如:由于每帧图像的尺度模糊使得自运动网络不能提供完整的相机轨迹。本文对尺度一致性预测提出几何一致性loss,并引入self-discover mask来解决运动物体遮挡

 

介绍

    对视频中选取任意两帧图像,将一帧图像深度图转换到3D空间,然后根据估计的自运动投影到另一帧上,最后对映射估计的深度图的不一致性进行最小化。这将使深度网络从连续图像中估计出几何一致的结果,并且帧与帧之间的一致性可以传递到整个视频序列。由于自运动尺度深度尺度联系密切,可以从自运动网络中估计出尺度一致的相对相机位姿

    有关运动物体,之前的方法使用额外的光流语义分割网络,但是计算量加大。我们的方法可以从提出的几何一致性项自动找到一个mask来解决。并且可以定位属于动态、遮挡或者复杂区域的像素。通过给这些像素低权重避免它们对图像重建loss的影响(Figure 2)。

        图二:从上到下:采集图像,估计深度,自发现mask。 提出的mask可以有效识别遮挡物运动物体

贡献:

  • 提出几何一致性约束使估计的深度和自运动的尺度一致
  • 在之前的几何一致性约束前提下,提出一个self-discovered mask解决动态场景和遮挡。不需要额外的光流或易于分割网络

 

2 相关工作

  • Grag:<
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值